搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成二维材料非线性光学特性研究进展

刘宁 刘肯 朱志宏

引用本文:
Citation:

集成二维材料非线性光学特性研究进展

刘宁, 刘肯, 朱志宏

Research progress of nonlinear optical properties of integrated two-dimensional materials

Liu Ning, Liu Ken, Zhu Zhi-Hong
PDF
HTML
导出引用
  • 全光信号处理中具有优异非线性光学特性的光子平台对于提升器件的集成度、调制速度以及工作带宽等性能参数至关重要. 成熟的硅、氧化硅以及氮化硅光子平台由于材料本身中心对称, 基于这些平台的集成光子器件可实现的非线性光学功能受限; 二维材料尽管有着优异的非线性光学特性, 但只有原子层厚, 其非线性潜能无法被充分利用. 将二维材料与成熟的光子平台集成, 在充分利用光子平台成熟加工工艺的基础上, 可以显著提高光与二维材料的相互作用, 提升光子平台的非线性光学性能. 基于以上背景, 本文总结了近年来在基于转移方法和直接生长法制备的多种异质集成二维材料光子器件中进行非线性光学特性研究的最新进展; 阐述了相较于传统转移方法, 基于直接生长方法进行集成二维材料非线性光学研究的优势以及未来需要解决的技术难点; 指明了该领域未来的研究发展趋势; 并指出直接在各种成熟的光子平台上生长二维材料进行集成非线性光学特性的研究会对未来光通信、信号处理、光传感以及量子技术等领域的发展产生深远影响.
    Photonic platforms with excellent nonlinear optical characteristics are very important to improve the devices' performance parameters such as integration, modulation speeds and working bandwidths for all-optical signal processing. The traditional processing technology of photonic platforms based on silicon, silicon nitride and silicon oxide is mature, but the nonlinear function of these optical platforms is limited due to the characteristics of materials; Although two-dimensional (2D) materials possess excellent nonlinear optical properties, their nonlinear potentials cannot be fully utilized because of their atomic layer thickness. Integrating 2D materials with mature photonic platforms can significantly improve the interaction between light and matter, give full play to the potentials of 2D materials in the field of nonlinear optics, and improve the nonlinear optical performances of the integrated platforms on the basis of fully utilizing the mature processing technology of the photonic platforms. Based on the above ideas, starting from the basic principle of nonlinear optics (Section 2), this review combs the research progress of various nonlinear photonic platforms (resonators, metasurfaces, optical fibers, on-chip waveguides, etc.) heterogeneously integrated with 2D materials, realized by traditional transfer methods (Section 3) and emerging direct-growth methods (Section 4) in recent years, and the introduction is divided into second-order and third-order nonlinearity. Comparing with the transfer methods, the advantages of using direct-growth methods to realize the heterogeneous integration of 2D materials and photonic platforms for the study of nonlinear optics are expounded, and the technical difficulties to be overcome in preparing the actual devices are also pointed. In the future, we can try to grow 2D materials directly onto the surfaces of various cavities to study the enhancement of second-order nonlinearity; we can also try to grow 2D materials directly onto the on-chip waveguides or microrings to study the enhancement of third-order nonlinearity. Generally speaking, the research on integrated nonlinearity by directly growing 2D materials onto various photonic structures has aroused great interest of researchers in this field. As time goes on, breakthrough progress will be made in this field, and technical problems such as continuous growth of high-quality 2D materials onto photonic structures and wafer-level large-scale preparation will be broken through, further improving the performance parameters of chips and laying a good foundation for optical communication, signal processing, optical sensing, all-optical computing, quantum technology and so on.
      通信作者: 刘肯, liukener@163.com ; 朱志宏, zzhwcx@163.com
      Corresponding author: Liu Ken, liukener@163.com ; Zhu Zhi-Hong, zzhwcx@163.com
    [1]

    Atabaki A H, Moazeni S, Pavanello F, Gevorgyan H, Notaros J, Alloatti L, Wade M T, Sun C, Kruger S A, Meng H, Al Qubaisi K, Wang I, Zhang B, Khilo A, Baiocco C V, Popović M A, Stojanović V M, Ram R J 2018 Nature 556 349Google Scholar

    [2]

    Ren T H, Loh K P 2019 J. Appl. Phys. 125 230901Google Scholar

    [3]

    Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M 2016 J. Opt. 18 073003Google Scholar

    [4]

    Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K 2018 Optica 5 1354Google Scholar

    [5]

    Wang H M, Chai H Y, Lv Z R, Zhang Z K, Meng L, Yang X G, Yang T 2020 J. Semicond. 41 101301Google Scholar

    [6]

    Sharma T, Wang J Q, Kaushik B K, Cheng Z Z, Kumar R, Wei Z, Li X J 2020 IEEE Access 8 195436Google Scholar

    [7]

    Moss D J, Morandotti R, Gaeta A L, Lipson M 2013 Nat. Photon. 7 597Google Scholar

    [8]

    Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, Le Gallo M, Fu X, Lukashchuk A, Raja A S, Liu J, Wright C D, Sebastian A, Kippenberg T J, Pernice W H P, Bhaskaran H 2021 Nature 589 52Google Scholar

    [9]

    Yuan S, Wu Y K, Dang Z Z, Zeng C, Qi X Z, Guo G C, Ren X F, Xia J S 2021 Phys. Rev. Lett. 127 153901Google Scholar

    [10]

    Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H, Qin S Q 2018 ACS Photonics 5 342Google Scholar

    [11]

    Wang C L, Li J, Yi A L, Fang Z W, Zhou L P, Wang Z, Niu R, Chen Y, Zhang J X, Cheng Y, Liu J Q, Dong C H, Ou X 2022 Light Sci. Appl. 11 341Google Scholar

    [12]

    Markov I L 2014 Nature 512 147Google Scholar

    [13]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photon. 13 158Google Scholar

    [14]

    Lin G P, Coillet A, Chembo Y K 2017 Adv. Opt. Photon. 9 828Google Scholar

    [15]

    Rahim A, Spuesens T, Baets R, Bogaerts W 2018 Proc. IEEE 106 2313Google Scholar

    [16]

    Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 eaan8083Google Scholar

    [17]

    Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Selvaraja S K, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R 2012 Laser Photon. Rev. 6 47Google Scholar

    [18]

    Tsang H K, Wong C S, Liang T K, Day I E, Roberts S W, Harpin A, Drake J, Asghari M 2002 Appl. Phys. Lett. 80 416Google Scholar

    [19]

    Jalali B 2010 Nat. Photon. 4 506Google Scholar

    [20]

    Marpaung D, Yao J, Capmany J 2019 Nat. Photon. 13 80Google Scholar

    [21]

    Luke K, Dutt A, Poitras C B, Lipson M 2013 Opt. Express 21 22829Google Scholar

    [22]

    Pfeiffer M H P, Liu J, Raja A S, Morais T, Ghadiani B, Kippenberg T J 2018 Optica 5 884Google Scholar

    [23]

    Liu J, Huang G, Wang R N, He J, Raja A S, Liu T, Engelsen N J, Kippenberg T J 2021 Nat. Commun. 12 2236Google Scholar

    [24]

    Ye Z, Jia H, Huang Z, Shen C, Long J, Shi B, Luo Y H, Gao L, Sun W, Guo H, He J, Liu J 2023 Photon. Res. 11 558Google Scholar

    [25]

    Zhang Y, Cheng Z, Liu L, Zhu B, Wang J, Zhou W, Wu X, Tsang H K 2016 J. Opt. 18 055503Google Scholar

    [26]

    Li M, Zhang L, Tong L M, Dai D X 2018 Photon. Res. 6 B13Google Scholar

    [27]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [28]

    Loh K P, Bao Q, Eda G, Chhowalla M 2010 Nat. Chem. 2 1015Google Scholar

    [29]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J S, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z 2018 Nature 556 355Google Scholar

    [30]

    Liu H, Neal A T, Zhu Z H, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [31]

    Ma H, Liang J, Hong H, Liu K H, Zou D X, Wu M H, Liu K H 2020 Nanoscale 12 22891Google Scholar

    [32]

    Wen X L, Gong Z B, Li D H 2019 Infomat 1 317Google Scholar

    [33]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [34]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photon. 8 899Google Scholar

    [35]

    Sun Z, Martinez A, Wang F 2016 Nat. Photon. 10 227Google Scholar

    [36]

    Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P 2020 Nat. Nanotechnol. 15 545Google Scholar

    [37]

    白瑞雪, 杨珏晗, 魏大海, 魏钟鸣 2021 物理学报 70 186202Google Scholar

    Bai R X, Yang J H, Wei D H, Wei Z M 2021 Acta Phys. Sin. 70 186202Google Scholar

    [38]

    Wang S Y, Liu X X, Xu M S, Liu L W, Yang D R, Zhou P 2022 Nat. Mater. 21 1225Google Scholar

    [39]

    Paras, Yadav K, Kumar P, Teja D R, Chakraborty S, Chakraborty M, Mohapatra S S, Sahoo A, Chou M M C, Liang C T, Hang D R 2023 Nanomaterials 13 160Google Scholar

    [40]

    Healey A J, Scholten S C, Yang T, Scott J A, Abrahams G J, Robertson I O, Hou X F, Guo Y F, Rahman S, Lu Y Q, Kianinia M, Aharonovich I, Tetienne J P 2023 Nat. Phys. 19 87Google Scholar

    [41]

    Du L, Molas M R, Huang Z, Zhang G, Wang F, Sun Z 2023 Science 379 eadg0014Google Scholar

    [42]

    Dogadov O, Trovatello C, Yao B C, Soavi G, Cerullo G 2022 Laser Photon. Rev. 16 2100726Google Scholar

    [43]

    An J, Zhao X, Zhang Y, Liu M, Yuan J, Sun X, Zhang Z, Wang B, Li S, Li D 2022 Adv. Funct. Mater. 32 2110119Google Scholar

    [44]

    Liu J, Bo F, Chang L, Dong C H, Ou X, Regan B, Shen X, Song Q, Yao B, Zhang W, Zou C L, Xiao Y F 2022 Sci. China-Phys. Mech. Astron. 65 104201Google Scholar

    [45]

    Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X 2021 Adv. Sci. 8 2003834Google Scholar

    [46]

    Li J, Liu C, Chen H, Guo J, Zhang M, Dai D 2020 Nanophotonics 9 2295Google Scholar

    [47]

    Ma Q, Ren G, Mitchell A, Ou J Z 2020 Nanophotonics 9 2191Google Scholar

    [48]

    Chen H T, Wang C, Ouyang H, Song Y F, Jiang T 2020 Nanophotonics 9 2107Google Scholar

    [49]

    Wei G H, Stanev T K, Czaplewski D A, Jung I W, Stern N P 2015 Appl. Phys. Lett. 107 091112Google Scholar

    [50]

    Zhou R, Krasnok A, Hussain N, Yang S, Ullah K 2022 Nanophotonics 11 3007Google Scholar

    [51]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [52]

    Zhang J, Zhao W, Yu P, Yang G, Liu Z 2020 2 D Mater. 7 042002Google Scholar

    [53]

    Leuthold J, Koos C, Freude W 2010 Nat. Photon. 4 535Google Scholar

    [54]

    季家镕, 冯莹 2008 高等光学教程: 非线性光学与导波光学 (北京: 科学出版社)

    Ji J R, Feng Y, 2008 Advanced Optics Course: Nonlinear Optics and Guided-Wave Optics (Beijing: Science Press) (in Chinese)

    [55]

    Zhang X, Cao Q T, Wang Z, Liu Y X, Qiu C W, Yang L, Gong Q, Xiao Y F 2019 Nat. Photon. 13 21Google Scholar

    [56]

    Hao Z, Jiang B, Ma Y, Yi R, Jin H, Huang L, Gan X T, Zhao J 2023 Phys. Rev. Appl. 19 L031002Google Scholar

    [57]

    Chen J H, Xiong Y F, Xu F, Lu Y Q 2021 Light Sci. Appl. 10 78Google Scholar

    [58]

    Xiao J, Zhao M, Wang Y, Zhang X 2017 Nanophotonics 6 1309Google Scholar

    [59]

    Autere A, Jussila H, Marini A, Saavedra J R M, Dai Y, Säynätjoki A, Karvonen L, Yang H, Amirsolaimani B, Norwood R A, Peyghambarian N, Lipsanen H, Kieu K, de Abajo F J G, Sun Z 2018 Phys. Rev. B 98 115426Google Scholar

    [60]

    Tang B, Che B, Xu M, Ang Z P, Di J, Gao H J, Yang H, Zhou J, Liu Z 2021 Small Struct. 2 2170012Google Scholar

    [61]

    Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S, Yan J, Mandrus D G, Yao W, Xu X 2015 Nat. Nanotechnol. 10 407Google Scholar

    [62]

    Fryett T, Zhan A, Majumdar A 2018 Nanophotonics 7 355Google Scholar

    [63]

    Zhang M, Han N, Zhang J, Wang J, Chen X, Zhao J, Gan X T 2023 Sci. Adv. 9 eadf4571Google Scholar

    [64]

    Yi F, Ren M, Reed J C, Zhu H, Hou J, Naylor C H, Johnson A T C, Agarwal R, Cubukcu E 2016 Nano Lett. 16 1631Google Scholar

    [65]

    Day J K, Chung M H, Lee Y H, Menon V M 2016 Opt. Mater. Express 6 2360Google Scholar

    [66]

    Fryett T K, Seyler K L, Zheng J, Liu C H, Xu X, Majumdar A 2017 2 D Mater. 4 015031Google Scholar

    [67]

    Jie W, Chen X, Li D, Xie L, Hui Y Y, Lau S P, Cui X, Hao J 2015 Angew. Chem. Int. Ed. 54 1185Google Scholar

    [68]

    Gan X T, Zhao C Y, Hu S Q, Wang T, Song Y, Li J, Zhao Q H, Jie W Q, Zhao J L 2018 Light Sci. Appl. 7 17126Google Scholar

    [69]

    Han X, Wang K, Persaud P D, Xing X, Liu W, Long H, Li F, Wang B, Singh M R, Lu P X 2020 ACS Photonics 7 562Google Scholar

    [70]

    Shi J, Wu X, Wu K, Zhang S, Sui X, Du W, Yue S, Liang Y, Jiang C, Wang Z, Wang W, Liu L, Wu B, Zhang Q, Huang Y, Qiu C W, Liu X 2022 ACS Nano 16 13933Google Scholar

    [71]

    Du J, Shi J, Li C, Shang Q, Liu X, Huang Y, Zhang Q 2023 Nano Res. 16 4061Google Scholar

    [72]

    Wang Z, Dong Z, Zhu H, Jin L, Chiu M H, Li L J, Xu Q H, Eda G, Maier S A, Wee A T S, Qiu C W, Yang J K W 2018 ACS Nano 12 1859Google Scholar

    [73]

    Shi J, Liang W Y, Raja S S, Sang Y, Zhang X Q, Chen C A, Wang Y, Yang X, Lee Y H, Ahn H, Gwo S 2018 Laser Photon. Rev. 12 1800188Google Scholar

    [74]

    Chen J, Wang K, Long H, Han X, Hu H, Liu W, Wang B, Lu P X 2018 Nano Lett. 18 1344Google Scholar

    [75]

    Leng Q, Su H, Liu J, Zhou L, Qin K, Wang Q, Fu J, Wu S, Zhang X 2021 Nanophotonics 10 1871Google Scholar

    [76]

    Liu T, Xiao S, Li B, Gu M, Luan H, Fang X 2022 Front. Nanotechnol. 4 891892Google Scholar

    [77]

    Yuan Q, Fang L, Fang H, Li J, Wang T, Jie W, Zhao J, Gan X T 2019 ACS Photonics 6 2252Google Scholar

    [78]

    Bernhardt N, Koshelev K, White S J U, Meng K W C, Fröch J E, Kim S, Tran T T, Choi D-Y, Kivshar Y, Solntsev A S 2020 Nano Lett. 20 5309Google Scholar

    [79]

    Zhang Z, Zhang L, Gogna R, Chen Z, Deng H 2020 Solid State Commun. 322 114043Google Scholar

    [80]

    Löchner F J F, George A, Koshelev K, Bucher T, Najafidehaghani E, Fedotova A, Choi D-Y, Pertsch T, Staude I, Kivshar Y, Turchanin A, Setzpfandt F 2021 ACS Photonics 8 218Google Scholar

    [81]

    Chen J H, Tan J, Wu G X, Zhang X J, Xu F, Lu Y Q 2019 Light Sci. Appl. 8 8Google Scholar

    [82]

    Jiang B, Hao Z, Ji Y, Hou Y, Yi R, Mao D, Gan X T, Zhao J 2020 Light Sci. Appl. 9 63Google Scholar

    [83]

    Luo Z, Liu M, Liu H, Zheng X, Luo A, Zhao C, Zhang H, Wen S, Xu W 2013 Opt. Lett. 38 5212Google Scholar

    [84]

    Hao Z, Jiang B, Hou Y, Li C, Yi R, Ji Y, Li J, Li A, Gan X T, Zhao J 2021 Opt. Lett. 46 733Google Scholar

    [85]

    Hao Z, Ma Y, Jiang B, Hou Y, Li A, Yi R, Gan X T, Zhao J 2022 Sci. China Inf. Sci. 65 162403Google Scholar

    [86]

    Ma Y, Jiang B, Guo Y, Zhang P, Cheng T, Gan X T, Zhao J 2022 Opt. Express 30 32438Google Scholar

    [87]

    Chen H T, Corboliou V, Solntsev A S, Choi D Y, Vincenti M A, de Ceglia D, de Angelis C, Lu Y Q, Neshev D N 2017 Light Sci. Appl. 6 e17060Google Scholar

    [88]

    Li D, Wei C, Song J, Huang X, Wang F, Liu K, Xiong W, Hong X, Cui B, Feng A, Jiang L, Lu Y Q 2019 Nano Lett. 19 4195Google Scholar

    [89]

    Wang B B, Ji Y F, Gu L P, Fang L, Gan X T, Zhao J L 2022 ACS Photonics 9 1671Google Scholar

    [90]

    Zhu C Y, Zhang Z, Qin J K, Wang Z, Wang C, Miao P, Liu Y, Huang P Y, Zhang Y, Xu K, Zhen L, Chai Y, Xu C Y 2023 Nat. Commun. 14 2521Google Scholar

    [91]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Stryland E W V 1990 IEEE J. Quantum Electron. 26 760Google Scholar

    [92]

    Zhang H, Virally S, Bao Q, Kian Ping L, Massar S, Godbout N, Kockaert P 2012 Opt. Lett. 37 1856Google Scholar

    [93]

    Demetriou G, Bookey H T, Biancalana F, Abraham E, Wang Y, Ji W, Kar A K 2016 Opt. Express 24 13033Google Scholar

    [94]

    Zheng X, Jia B, Chen X, Gu M 2014 Adv. Mater. 26 2699Google Scholar

    [95]

    Xu X, Zheng X, He F, Wang Z, Subbaraman H, Wang Y, Jia B, Chen R T 2017 Sci. Rep. 7 9646Google Scholar

    [96]

    Bikorimana S, Lama P, Walser A, Dorsinville R, Anghel S, Mitioglu A, Micu A, Kulyuk L 2016 Opt. Express 24 20685Google Scholar

    [97]

    Dong N, Li Y, Zhang S, McEvoy N, Zhang X, Cui Y, Zhang L, Duesberg G, Wang J 2016 Opt. Lett. 41 3936Google Scholar

    [98]

    Yang T, Abdelwahab I, Lin H, Bao Y, Rong Tan S J, Fraser S, Loh K P, Jia B 2018 ACS Photonics 5 4969Google Scholar

    [99]

    Jia L, Wu J, Yang T, Jia B, Moss D J 2020 ACS Appl. Nano Mater. 3 6876Google Scholar

    [100]

    Wu Y, Yao B C, Feng Q Y, Cao X L, Zhou X Y, Rao Y J, Gong Y, Zhang W L, Wang Z G, Chen Y F, Chiang K S 2015 Photon. Res. 3 A64Google Scholar

    [101]

    Zhang H, Healy N, Runge A F J, Huang C C, Hewak D W, Peacock A C 2018 Opt. Lett. 43 3100Google Scholar

    [102]

    Dinu M, Quochi F, Garcia H 2003 Appl. Phys. Lett. 82 2954Google Scholar

    [103]

    Corcoran B, Monat C, Grillet C, Moss D J, Eggleton B J, White T P, O'Faolain L, Krauss T F 2009 Nat. Photon. 3 206Google Scholar

    [104]

    Baba T 2008 Nat. Photon. 2 465Google Scholar

    [105]

    Matsuda N, Kato T, Harada K-i, Takesue H, Kuramochi E, Taniyama H, Notomi M 2011 Opt. Express 19 19861Google Scholar

    [106]

    Zhang Y J, Wang L, Cheng Z Z, Tsang H K 2017 Appl. Phys. Lett. 111 041104Google Scholar

    [107]

    Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A 2010 Phys. Rev. Lett. 105 097401Google Scholar

    [108]

    Liu K, Zhang J F, Xu W, Zhu Z H, Guo C C, Li X J, Qin S Q 2015 Sci. Rep. 5 16734Google Scholar

    [109]

    Ishizawa A, Kou R, Goto T, Tsuchizawa T, Matsuda N, Hitachi K, Nishikawa T, Yamada K, Sogawa T, Gotoh H 2017 Sci. Rep. 7 45520Google Scholar

    [110]

    Feng Q, Cong H, Zhang B, Wei W Q, Liang Y Y, Fang S B, Wang T, Zhang J J 2019 Appl. Phys. Lett. 114 071104Google Scholar

    [111]

    Ji M X, Cai H, Deng L K, Huang Y, Huang Q Z, Xia J S, Li Z Y, Yu J Z, Wang Y 2015 Opt. Express 23 18679Google Scholar

    [112]

    Lin H T, Song Y, Huang Y Z, Kita D, Deckoff-Jones S, Wang K Q, Li L, Li J Y, Zheng H Y, Luo Z Q, Wang H Z, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J J 2017 Nat. Photon. 11 798Google Scholar

    [113]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [114]

    Dreyer D R, Park S, Bielawski C W, Ruoff R S 2010 Chem. Soc. Rev. 39 228Google Scholar

    [115]

    Dreyer D R, Todd A D, Bielawski C W 2014 Chem. Soc. Rev. 43 5288Google Scholar

    [116]

    Yang Y, Lin H, Zhang B Y, Zhang Y, Zheng X, Yu A, Hong M, Jia B 2019 ACS Photonics 6 1033Google Scholar

    [117]

    Wu J, Yang Y, Qu Y, Xu X, Liang Y, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2019 Laser Photon. Rev. 13 1900056Google Scholar

    [118]

    Wu J, Jia L, Zhang Y, Qu Y, Jia B, Moss D J 2021 Adv. Mater. 33 2006415Google Scholar

    [119]

    Jia L, Wu J, Zhang Y, Qu Y, Jia B, Moss D J 2023 Micromachines 14 307Google Scholar

    [120]

    Zhang Y, Wu J, Jia L, Qu Y, Yang Y, Jia B, Moss D J 2023 Laser Photon. Rev. 17 2200512Google Scholar

    [121]

    Wu J, Lin H, Moss D J, Loh K P, Jia B 2023 Nat. Rev. Chem. 7 162Google Scholar

    [122]

    Yang Y, Wu J, Xu X, Liang Y, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2018 APL Photonics 3 120803Google Scholar

    [123]

    Wu J, Yang Y, Qu Y, Jia L, Zhang Y, Xu X, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2020 Small 16 1906563Google Scholar

    [124]

    Zhang Y N, Wu J Y, Yang Y Y, Qu Y, Jia L N, Moein T, Jia B H, Moss D J 2020 ACS Appl. Mater. Interfaces 12 33094Google Scholar

    [125]

    Zhang Y N, Wu J Y, Yang Y Y, Qu Y, Jia L N, Jia B H, Moss D J 2022 Micromachines 13 756Google Scholar

    [126]

    Qu Y, Wu J, Zhang Y, Jia L, Liang Y, Jia B, Moss D J 2021 J. Lightwave Technol. 39 2902Google Scholar

    [127]

    Qu Y, Wu J Y, Yang Y Y, Zhang Y N, Liang Y, El Dirani H, Crochemore R, Demongodin P, Sciancalepore C, Grillet C, Monat C, Jia B H, Moss D J 2020 Adv. Opt. Mater. 8 2001048Google Scholar

    [128]

    Zhang Y, Wu J, Yang Y, Qu Y, Dirani H E, Crochemore R, Sciancalepore C, Demongodin P, Grillet C, Monat C, Jia B, Moss D J 2023 IEEE J. Sel. Top. Quantum Electron. 29 1Google Scholar

    [129]

    Zhang Y, Wu J, Yang Y, Qu Y, Jia L, Dirani H E, Kerdiles S, Sciancalepore C, Demongodin P, Grillet C, Monat C, Jia B, Moss D J 2023 Adv. Mater. Technol. 8 2201796Google Scholar

    [130]

    Liu L H, Xu K, Wan X, Xu J B, Wong C Y, Tsang H K 2015 Photon. Res. 3 206Google Scholar

    [131]

    Zhang Y J, Tao L, Yi D, Xu J B, Tsang H K 2020 J. Opt. 22 025503Google Scholar

    [132]

    Wang Y, Pelgrin V, Gyger S, Uddin G M, Bai X, Lafforgue C, Vivien L, Jöns K D, Cassan E, Sun Z 2021 ACS Photonics 8 2713Google Scholar

    [133]

    He J, Paradisanos I, Liu T, Cadore A R, Liu J, Churaev M, Wang R N, Raja A S, Javerzac-Galy C, Roelli P, Fazio D D, Rosa B L T, Tongay S, Soavi G, Ferrari A C, Kippenberg T J 2021 Nano Lett. 21 2709Google Scholar

    [134]

    Deckoff-Jones S, Pelgrin V, Zhang J, Lafforgue C, Deniel L, Guerber S, Ribeiro-Palau R, Boeuf F, Alonso-Ramos C, Vivien L, Hu J, Serna S 2021 J. Opt. 23 025802Google Scholar

    [135]

    Wang Y H, He S, Gao X Y, Ye P P, Lei L, Dong W C, Zhang X L, Xu P 2022 Photon. Res. 10 50Google Scholar

    [136]

    Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K H, Liu Z 2019 Nat. Photon. 13 754Google Scholar

    [137]

    Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K H, Bai X, Liu Z 2020 Nat. Nanotechnol. 15 987Google Scholar

    [138]

    Ngo G Q, Najafidehaghani E, Gan Z, Khazaee S, Siems M P, George A, Schartner E P, Nolte S, Ebendorff-Heidepriem H, Pertsch T, Tuniz A, Schmidt M A, Peschel U, Turchanin A, Eilenberger F 2022 Nat. Photon. 16 769Google Scholar

    [139]

    George A, Neumann C, Kaiser D, Mupparapu R, Lehnert T, Hübner U, Tang Z, Winter A, Kaiser U, Staude I, Turchanin A 2019 J. Phys. Mater. 2 016001Google Scholar

    [140]

    Chen H, Guo K, Yin J, He S, Qiu G, Zhang M, Xu Z, Zhu G, Yang J, Yan P 2021 Laser Photon. Rev. 15 2000459Google Scholar

    [141]

    Wu J, Ma H, Yin P, Ge Y, Zhang Y, Li L, Zhang H, Lin H 2021 Small Sci. 1 2000053Google Scholar

    [142]

    Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X 2015 Nature 520 69Google Scholar

    [143]

    Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y, Zhang X 2015 Nat. Photon. 9 733Google Scholar

    [144]

    Zhao L, Shang Q, Gao Y, Shi J, Liu Z, Chen J, Mi Y, Yang P, Zhang Z, Du W, Hong M, Liang Y, Xie J, Hu X, Peng B, Leng J, Liu X, Zhao Y, Zhang Y, Zhang Q 2018 ACS Nano 12 9390Google Scholar

    [145]

    Feng J, Li Y, Zhang J, Tang Y, Sun H, Gan L, Ning C-Z 2022 Sci. Adv. 8 eabl5134Google Scholar

    [146]

    Ma R, Sutherland D S, Shi Y 2021 Mater. Today 50 570Google Scholar

    [147]

    Liu N, Yang X, Zhu Z H, Chen F, Zhou Y B, Xu J P, Liu K 2022 Nanoscale 14 49Google Scholar

    [148]

    Kuppadakkath A, Najafidehaghani E, Gan Z, Tuniz A, Ngo G Q, Knopf H, Löchner F J F, Abtahi F, Bucher T, Shradha S, Käsebier T, Palomba S, Felde N, Paul P, Ullsperger T, Schröder S, Szeghalmi A, Pertsch T, Staude I, Zeitner U, George A, Turchanin A, Eilenberger F 2022 Nanophotonics 11 4397Google Scholar

    [149]

    Ngo G Q, George A, Schock R T K, Tuniz A, Najafidehaghani E, Gan Z, Geib N C, Bucher T, Knopf H, Saravi S, Neumann C, Lühder T, Schartner E P, Warren-Smith S C, Ebendorff-Heidepriem H, Pertsch T, Schmidt M A, Turchanin A, Eilenberger F 2020 Adv. Mater. 32 2003826Google Scholar

    [150]

    Cheng Y, Yu W, Xie J, Wang R, Cui G, Cheng X, Li M, Wang K, Li J, Sun Z, Chen K, Liu K, Liu Z 2022 ACS Photonics 9 961Google Scholar

    [151]

    Pelgrin V, Yoon H H, Cassan E, Sun Z 2023 LAM 4 14Google Scholar

    [152]

    de Matos C J S, Rosa H G, Zapata J D, Steinberg D, Maldonado M, Thoroh de Souza E A, de Paula A M, Malard L M, Gomes A S L 2023 J. Opt. Soc. Am. B 40 C111Google Scholar

    [153]

    Liu N, Yang X, Zhang J, Zhu Z H, Liu K 2023 ACS Photonics 10 283Google Scholar

    [154]

    Hu G, Hong X, Wang K, Wu J, Xu H X, Zhao W, Liu W, Zhang S, Garcia-Vidal F, Wang B, Lu P X, Qiu C W 2019 Nat. Photon. 13 467Google Scholar

  • 图 1  集成二维材料非线性光子平台研究框架

    Fig. 1.  Research framework of nonlinear photonic platforms integrated with two-dimensional materials.

    图 2  非线性光学过程中典型的频率转换过程能量示意图, 其中包括二阶非线性过程中的SHG (a) 和SFG (b) 以及三阶非线性过程中的THG (c) 和FWM (d)

    Fig. 2.  Typical energy diagrams of frequency conversion process in nonlinear optical processes, including SHG (a) and SFG (b) in second-order nonlinear process and THG (c) and FWM (d) in third-order nonlinear process.

    图 3  二维材料中腔增强的SHG过程研究进展 (a) 二维材料中SHG的光机械增强[64]; (b) 二维MoS2中腔增强的SHG[65]; (c) 单层WSe2[66]以及 (d)层状GaSe[68]中Si光子晶体腔增强的SHG; (e) 单层WS2-Ag纳米腔中谐波谐振增强的SHG[69]; (f) 单层WS2置于Si基底上实现SHG的增强[70]

    Fig. 3.  Research progress on cavity-enhanced SHG process in 2D materials: (a) Optomechanical enhancement of SHG in 2D material[64]; (b) microcavity enhanced SHG in 2D MoS2[65]; silicon photonic crystal cavity enhanced SHG from monolayer WSe2[66] (c) and layered GaSe[68] (d); (e) harmonic resonance enhanced SHG in a monolayer WS2–Ag nanocavity[69]; (f) enhancement of SHG from monolayer WS2 on Si substrate[70].

    图 4  二维材料中等离激元增强的SHG过程研究进展 (a) 柔性衬底上单层WS2中等离激元增强的SHG[72]; (b) 单层WS2中等离激元增强的光学非线性[73]; (c) WS2–Au纳米孔洞集成超表面在可见光波段实现非线性超透镜[74]; (d) 单层MoS2置于悬空的金属纳米结构上通过等离激元谐振效应实现SHG的增强[75]

    Fig. 4.  Research progress on plasmonic-enhanced SHG process in 2D materials: (a) Plasmon-enhanced SHG from monolayer WS2 on flexible substrates[72]; (b) plasmonic enhancement of optical nonlinearity in monolayer WS2[73]; (c) WS2–Au nanohole hybrid metasurface for nonlinear metalenses in the visible region[74]; (d) enhanced SHG in monolayer MoS2 on suspended metallic nanostructures by plasmonic resonances[75].

    图 5  二维材料中介质超表面增强的SHG过程研究进展 (a) Si超表面与二维GaSe集成实现SHG和SFG[77]; (b) WS2单层中准BIC谐振增强的SHG[78]; (c) 借助Si3N4亚波长光栅结构实现单层MoS2中SHG的增强[79]; (d) 混合介电超表面上MoS2单层中SHG的增强[80]

    Fig. 5.  Research progress on SHG process enhanced by dielectric metasurface in 2D materials: (a) SHG and SFG from a Si metasurface integrated with 2D GaSe[77]; (b) quasi-BIC resonant enhancement of SHG in WS2 Monolayers[78]; (c) enhancement of SHG in monolayer MoS2 by a Si3N4 subwavelength grating[79]; (d) hybrid dielectric metasurfaces for enhancing SHG in MoS2 monolayers[80].

    图 6  (a) 基于转移方法制备的单层WS2-光纤纳米线混合结构实现SHG的增强[81]. (b)—(e) 基于溶液法制备的二维材料-光纤集成结构实现二阶非线性过程增强的研究进展 (b) 少层GaSe辅助光学微光纤实现高效的二阶非线性过程[82]; (c) 连续波泵浦的InSe集成的微光纤中频率上转换[84]; (d) 填充有GaSe纳米片的HCF结构示意图[85]; (e) GaSe纳米片集成的SCF实现SHG过程[86]

    Fig. 6.  (a) Enhanced SHG in hybrid WS2-optical-fiber-nanowire structureprepared by transfer method[81]. (b)–(e) Research progress on enhancement of second-order nonlinear process of 2D material-optical fiber integrated structures prepared by solution methods: (b) High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe[82]; (c) continuous-wave pumped frequency upconversions in an InSe-integrated microfiber[84]; (d) schematic of a HCF filled with GaSe nanosheets[85]; (e) SCF with embedded GaSe nanosheets for SHG[86].

    图 7  基于转移方法制备的二维材料-片上集成平台中二阶非线性增强的研究进展 (a) Si波导上二维MoSe2中SHG的增强[87]; (b) 单层MoS2与Ti02纳米线集成实现SHG的增强[88]; (c) 少层GaSe与Si3N4微环集成实现高效的SHG和SFG过程[89]; (d) SHG辅助的SnP2Se6光电探测器[90]

    Fig. 7.  Research progress on enhanced second-order nonlinear process enabled by integrated 2D material - on-chip integrated platforms prepared by transfer methods: (a) Enhanced SHG from two-dimensional MoSe2 on a Si waveguide[87]; (b) enhancement of SHG in a TiO2 nanowire integrated with monolayer MoS2[88]; (c) high-efficiency SHG and SFG in a Si3N4 microring integrated with few-layer GaSe[89]; (d) a schematic of the SHG-assisted SnP2Se6 photodetector[90].

    图 8  基于转移方法制备的三阶非线性增强的二维材料-光纤集成平台 (a) GCM中实现级联四波混频过程[100]; (b) MoS2覆盖的单模光纤示意图[101]

    Fig. 8.  2D material-optical fiber integrated platforms with enhanced third-order nonlinear process based on transfer methods: (a) Generation of cascaded FWM with GCM[100]; (b) schematic of a MoS2-coated SMF[101].

    图 9  石墨烯/Si非线性脊形波导中的超快脉冲传播[108]  (a) 超快脉冲在石墨烯/Si混合脊形波导中传播的示意图; Si脊形波导 (b-i), 石墨烯/Si脊形波导 (c-i) 以及石墨烯/Si类狭缝波导 (d-i) 的示意图; 飞秒脉冲沿着Si脊形波导 (b-ii), 石墨烯/Si脊形波导 (c-ii) 以及石墨烯/Si类狭缝波导 (d-ii) 传播后的实验测得的以及数值计算的输出光谱

    Fig. 9.  Ultra-fast pulse propagation in nonlinear graphene/Si ridge waveguide[108]: (a) Schematic of ultra-fast pulse propagation along the hybrid graphene/silicon ridge waveguide; schematic of a Si ridge waveguide (b-i), a graphene/Si ridge waveguide (c-i) and a graphene/Si slot-like ridge waveguide (d-i); experimentally measured and numerically calculated output spectra of the femtosecond pulses propagating along the Si ridge waveguide (b-ii), the graphene/Si ridge waveguide (c-ii), and the graphene/Si slot-like ridge waveguide (d-ii).

    图 10  基于转移方法实现片上集成二维材料三阶非线性增强的研究进展 (a) Si-石墨烯微环谐振腔集成实现FWM的增强[111]; (b) Si/石墨烯混合波导实现SPM的增强[110]; (c) GO/Hydex混合波导实现FWM的增强[122]; (d) 二维GO薄膜与Si纳米线集成实现SPM的增强[124]; (e) MoS2置于Si上波导实现光学克尔非线性的增强[130]; (f) 少层WS2与Si3N4波导异质集成实现非线性的增强[132]

    Fig. 10.  Research progress on third-order nonlinear enhancement of on-chip integrated 2D materials based on transfer methods: (a) Enhanced FWM in a Si-graphene microring resonator[111]; (b) enhanced SPM of graphene/Si hybrid waveguide[110]; (c) enhanced FWM in GO/hydex hybrid waveguide[122]; (d) enhanced SPM in Si nanowires integrated with 2D GO Films[124]; (e) enhanced optical Kerr nonlinearity of MoS2 on Si waveguides[130]; (f) enhancing Si3N4 waveguide nonlinearity with heterogeneous integration of few-layer WS2[132].

    图 11  基于直接生长法制备的二阶非线性增强的二维材料-光纤集成平台 (a) 两步生长方法示意图[137]; (b) 光纤中嵌入二维材料实现SHG[138]

    Fig. 11.  2D material-optical fiber integrated platforms with enhanced second-order nonlinear process based on direct growth methods: (a) Schematic of the two-step growth method[137]; (b) in-fiber SHG with embedded 2D materials[138].

    图 12  基于直接生长法制备的二阶非线性增强的二维材料-波导集成平台 (a) Si3N4波导上直接生长WS2实现SHG增强的示意图[147]; (b) Si波导上直接生长单层MoS2的概念示意图[148]

    Fig. 12.  Enhanced second-order nonlinear process in 2D material-waveguides integrated platforms based on direct growth methods: (a) Schematic diagram of SHG enhancement of the Si3N4 waveguides with directly grown WS2[147]; (b) concept schematic of Si waveguides with directly grown monolayer MoS2[148].

    图 13  基于直接生长法制备的三阶非线性的增强二维材料-光纤集成平台 (a) 嵌入MoS2的HCF中SHG和THG的示意图[137]; (b) 使用原子层厚度的半导体对光纤进行规模化的功能化[149]; (c) 石墨烯-PCF中产生谐波的示意图[150]

    Fig. 13.  2D material-fiber integrated platforms with enhanced third-order nonlinear process based on direct growth methods: (a) schematics of SHG and THG in MoS2-embedded HCF[137]; (b) scalable functionalization of optical fibers using atomically thin semiconductors[149]; (c) schematic of harmonic generations in graphene-PCF[150].

    表 1  基于Z扫描法测量出的不同二维材料的非线性折射率${n_2}$

    Table 1.  Nonlinear refractive index n2 of different 2D materials measured by Z-scan method.

    二维材料厚度泵浦波长/nmn2 /(m2·W–1)参考文献发表年度
    气相生长的石墨烯单层1550–10–11[92]2012
    5—7层1150—2400–(0.55-2.5) × 10–13[93]2016
    化学合成的氧化石墨烯2 μm8007.5 × 10–13[94]2014
    1 μm15504.5 × 10–14[95]2017
    气相生长的硫化钼25 μm1064(1.88 ± 0.48) × 10–16[96]2016
    气相生长的硫化钨0.75 nm1040(1.28 ± 0.03) × 10–14[97]2016
    气相生长的硒化钨11.4 nm1040(–1.87 ± 0.47) × 10–15
    机械剥离的黑磷15 nm1030–1.64 × 10–12[98]2018
    气相生长的硒化铂20 层800–1.33×10–15[99]2020
    下载: 导出CSV
  • [1]

    Atabaki A H, Moazeni S, Pavanello F, Gevorgyan H, Notaros J, Alloatti L, Wade M T, Sun C, Kruger S A, Meng H, Al Qubaisi K, Wang I, Zhang B, Khilo A, Baiocco C V, Popović M A, Stojanović V M, Ram R J 2018 Nature 556 349Google Scholar

    [2]

    Ren T H, Loh K P 2019 J. Appl. Phys. 125 230901Google Scholar

    [3]

    Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M 2016 J. Opt. 18 073003Google Scholar

    [4]

    Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K 2018 Optica 5 1354Google Scholar

    [5]

    Wang H M, Chai H Y, Lv Z R, Zhang Z K, Meng L, Yang X G, Yang T 2020 J. Semicond. 41 101301Google Scholar

    [6]

    Sharma T, Wang J Q, Kaushik B K, Cheng Z Z, Kumar R, Wei Z, Li X J 2020 IEEE Access 8 195436Google Scholar

    [7]

    Moss D J, Morandotti R, Gaeta A L, Lipson M 2013 Nat. Photon. 7 597Google Scholar

    [8]

    Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, Le Gallo M, Fu X, Lukashchuk A, Raja A S, Liu J, Wright C D, Sebastian A, Kippenberg T J, Pernice W H P, Bhaskaran H 2021 Nature 589 52Google Scholar

    [9]

    Yuan S, Wu Y K, Dang Z Z, Zeng C, Qi X Z, Guo G C, Ren X F, Xia J S 2021 Phys. Rev. Lett. 127 153901Google Scholar

    [10]

    Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H, Qin S Q 2018 ACS Photonics 5 342Google Scholar

    [11]

    Wang C L, Li J, Yi A L, Fang Z W, Zhou L P, Wang Z, Niu R, Chen Y, Zhang J X, Cheng Y, Liu J Q, Dong C H, Ou X 2022 Light Sci. Appl. 11 341Google Scholar

    [12]

    Markov I L 2014 Nature 512 147Google Scholar

    [13]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photon. 13 158Google Scholar

    [14]

    Lin G P, Coillet A, Chembo Y K 2017 Adv. Opt. Photon. 9 828Google Scholar

    [15]

    Rahim A, Spuesens T, Baets R, Bogaerts W 2018 Proc. IEEE 106 2313Google Scholar

    [16]

    Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 eaan8083Google Scholar

    [17]

    Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Selvaraja S K, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R 2012 Laser Photon. Rev. 6 47Google Scholar

    [18]

    Tsang H K, Wong C S, Liang T K, Day I E, Roberts S W, Harpin A, Drake J, Asghari M 2002 Appl. Phys. Lett. 80 416Google Scholar

    [19]

    Jalali B 2010 Nat. Photon. 4 506Google Scholar

    [20]

    Marpaung D, Yao J, Capmany J 2019 Nat. Photon. 13 80Google Scholar

    [21]

    Luke K, Dutt A, Poitras C B, Lipson M 2013 Opt. Express 21 22829Google Scholar

    [22]

    Pfeiffer M H P, Liu J, Raja A S, Morais T, Ghadiani B, Kippenberg T J 2018 Optica 5 884Google Scholar

    [23]

    Liu J, Huang G, Wang R N, He J, Raja A S, Liu T, Engelsen N J, Kippenberg T J 2021 Nat. Commun. 12 2236Google Scholar

    [24]

    Ye Z, Jia H, Huang Z, Shen C, Long J, Shi B, Luo Y H, Gao L, Sun W, Guo H, He J, Liu J 2023 Photon. Res. 11 558Google Scholar

    [25]

    Zhang Y, Cheng Z, Liu L, Zhu B, Wang J, Zhou W, Wu X, Tsang H K 2016 J. Opt. 18 055503Google Scholar

    [26]

    Li M, Zhang L, Tong L M, Dai D X 2018 Photon. Res. 6 B13Google Scholar

    [27]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [28]

    Loh K P, Bao Q, Eda G, Chhowalla M 2010 Nat. Chem. 2 1015Google Scholar

    [29]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J S, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z 2018 Nature 556 355Google Scholar

    [30]

    Liu H, Neal A T, Zhu Z H, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [31]

    Ma H, Liang J, Hong H, Liu K H, Zou D X, Wu M H, Liu K H 2020 Nanoscale 12 22891Google Scholar

    [32]

    Wen X L, Gong Z B, Li D H 2019 Infomat 1 317Google Scholar

    [33]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [34]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photon. 8 899Google Scholar

    [35]

    Sun Z, Martinez A, Wang F 2016 Nat. Photon. 10 227Google Scholar

    [36]

    Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P 2020 Nat. Nanotechnol. 15 545Google Scholar

    [37]

    白瑞雪, 杨珏晗, 魏大海, 魏钟鸣 2021 物理学报 70 186202Google Scholar

    Bai R X, Yang J H, Wei D H, Wei Z M 2021 Acta Phys. Sin. 70 186202Google Scholar

    [38]

    Wang S Y, Liu X X, Xu M S, Liu L W, Yang D R, Zhou P 2022 Nat. Mater. 21 1225Google Scholar

    [39]

    Paras, Yadav K, Kumar P, Teja D R, Chakraborty S, Chakraborty M, Mohapatra S S, Sahoo A, Chou M M C, Liang C T, Hang D R 2023 Nanomaterials 13 160Google Scholar

    [40]

    Healey A J, Scholten S C, Yang T, Scott J A, Abrahams G J, Robertson I O, Hou X F, Guo Y F, Rahman S, Lu Y Q, Kianinia M, Aharonovich I, Tetienne J P 2023 Nat. Phys. 19 87Google Scholar

    [41]

    Du L, Molas M R, Huang Z, Zhang G, Wang F, Sun Z 2023 Science 379 eadg0014Google Scholar

    [42]

    Dogadov O, Trovatello C, Yao B C, Soavi G, Cerullo G 2022 Laser Photon. Rev. 16 2100726Google Scholar

    [43]

    An J, Zhao X, Zhang Y, Liu M, Yuan J, Sun X, Zhang Z, Wang B, Li S, Li D 2022 Adv. Funct. Mater. 32 2110119Google Scholar

    [44]

    Liu J, Bo F, Chang L, Dong C H, Ou X, Regan B, Shen X, Song Q, Yao B, Zhang W, Zou C L, Xiao Y F 2022 Sci. China-Phys. Mech. Astron. 65 104201Google Scholar

    [45]

    Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X 2021 Adv. Sci. 8 2003834Google Scholar

    [46]

    Li J, Liu C, Chen H, Guo J, Zhang M, Dai D 2020 Nanophotonics 9 2295Google Scholar

    [47]

    Ma Q, Ren G, Mitchell A, Ou J Z 2020 Nanophotonics 9 2191Google Scholar

    [48]

    Chen H T, Wang C, Ouyang H, Song Y F, Jiang T 2020 Nanophotonics 9 2107Google Scholar

    [49]

    Wei G H, Stanev T K, Czaplewski D A, Jung I W, Stern N P 2015 Appl. Phys. Lett. 107 091112Google Scholar

    [50]

    Zhou R, Krasnok A, Hussain N, Yang S, Ullah K 2022 Nanophotonics 11 3007Google Scholar

    [51]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [52]

    Zhang J, Zhao W, Yu P, Yang G, Liu Z 2020 2 D Mater. 7 042002Google Scholar

    [53]

    Leuthold J, Koos C, Freude W 2010 Nat. Photon. 4 535Google Scholar

    [54]

    季家镕, 冯莹 2008 高等光学教程: 非线性光学与导波光学 (北京: 科学出版社)

    Ji J R, Feng Y, 2008 Advanced Optics Course: Nonlinear Optics and Guided-Wave Optics (Beijing: Science Press) (in Chinese)

    [55]

    Zhang X, Cao Q T, Wang Z, Liu Y X, Qiu C W, Yang L, Gong Q, Xiao Y F 2019 Nat. Photon. 13 21Google Scholar

    [56]

    Hao Z, Jiang B, Ma Y, Yi R, Jin H, Huang L, Gan X T, Zhao J 2023 Phys. Rev. Appl. 19 L031002Google Scholar

    [57]

    Chen J H, Xiong Y F, Xu F, Lu Y Q 2021 Light Sci. Appl. 10 78Google Scholar

    [58]

    Xiao J, Zhao M, Wang Y, Zhang X 2017 Nanophotonics 6 1309Google Scholar

    [59]

    Autere A, Jussila H, Marini A, Saavedra J R M, Dai Y, Säynätjoki A, Karvonen L, Yang H, Amirsolaimani B, Norwood R A, Peyghambarian N, Lipsanen H, Kieu K, de Abajo F J G, Sun Z 2018 Phys. Rev. B 98 115426Google Scholar

    [60]

    Tang B, Che B, Xu M, Ang Z P, Di J, Gao H J, Yang H, Zhou J, Liu Z 2021 Small Struct. 2 2170012Google Scholar

    [61]

    Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S, Yan J, Mandrus D G, Yao W, Xu X 2015 Nat. Nanotechnol. 10 407Google Scholar

    [62]

    Fryett T, Zhan A, Majumdar A 2018 Nanophotonics 7 355Google Scholar

    [63]

    Zhang M, Han N, Zhang J, Wang J, Chen X, Zhao J, Gan X T 2023 Sci. Adv. 9 eadf4571Google Scholar

    [64]

    Yi F, Ren M, Reed J C, Zhu H, Hou J, Naylor C H, Johnson A T C, Agarwal R, Cubukcu E 2016 Nano Lett. 16 1631Google Scholar

    [65]

    Day J K, Chung M H, Lee Y H, Menon V M 2016 Opt. Mater. Express 6 2360Google Scholar

    [66]

    Fryett T K, Seyler K L, Zheng J, Liu C H, Xu X, Majumdar A 2017 2 D Mater. 4 015031Google Scholar

    [67]

    Jie W, Chen X, Li D, Xie L, Hui Y Y, Lau S P, Cui X, Hao J 2015 Angew. Chem. Int. Ed. 54 1185Google Scholar

    [68]

    Gan X T, Zhao C Y, Hu S Q, Wang T, Song Y, Li J, Zhao Q H, Jie W Q, Zhao J L 2018 Light Sci. Appl. 7 17126Google Scholar

    [69]

    Han X, Wang K, Persaud P D, Xing X, Liu W, Long H, Li F, Wang B, Singh M R, Lu P X 2020 ACS Photonics 7 562Google Scholar

    [70]

    Shi J, Wu X, Wu K, Zhang S, Sui X, Du W, Yue S, Liang Y, Jiang C, Wang Z, Wang W, Liu L, Wu B, Zhang Q, Huang Y, Qiu C W, Liu X 2022 ACS Nano 16 13933Google Scholar

    [71]

    Du J, Shi J, Li C, Shang Q, Liu X, Huang Y, Zhang Q 2023 Nano Res. 16 4061Google Scholar

    [72]

    Wang Z, Dong Z, Zhu H, Jin L, Chiu M H, Li L J, Xu Q H, Eda G, Maier S A, Wee A T S, Qiu C W, Yang J K W 2018 ACS Nano 12 1859Google Scholar

    [73]

    Shi J, Liang W Y, Raja S S, Sang Y, Zhang X Q, Chen C A, Wang Y, Yang X, Lee Y H, Ahn H, Gwo S 2018 Laser Photon. Rev. 12 1800188Google Scholar

    [74]

    Chen J, Wang K, Long H, Han X, Hu H, Liu W, Wang B, Lu P X 2018 Nano Lett. 18 1344Google Scholar

    [75]

    Leng Q, Su H, Liu J, Zhou L, Qin K, Wang Q, Fu J, Wu S, Zhang X 2021 Nanophotonics 10 1871Google Scholar

    [76]

    Liu T, Xiao S, Li B, Gu M, Luan H, Fang X 2022 Front. Nanotechnol. 4 891892Google Scholar

    [77]

    Yuan Q, Fang L, Fang H, Li J, Wang T, Jie W, Zhao J, Gan X T 2019 ACS Photonics 6 2252Google Scholar

    [78]

    Bernhardt N, Koshelev K, White S J U, Meng K W C, Fröch J E, Kim S, Tran T T, Choi D-Y, Kivshar Y, Solntsev A S 2020 Nano Lett. 20 5309Google Scholar

    [79]

    Zhang Z, Zhang L, Gogna R, Chen Z, Deng H 2020 Solid State Commun. 322 114043Google Scholar

    [80]

    Löchner F J F, George A, Koshelev K, Bucher T, Najafidehaghani E, Fedotova A, Choi D-Y, Pertsch T, Staude I, Kivshar Y, Turchanin A, Setzpfandt F 2021 ACS Photonics 8 218Google Scholar

    [81]

    Chen J H, Tan J, Wu G X, Zhang X J, Xu F, Lu Y Q 2019 Light Sci. Appl. 8 8Google Scholar

    [82]

    Jiang B, Hao Z, Ji Y, Hou Y, Yi R, Mao D, Gan X T, Zhao J 2020 Light Sci. Appl. 9 63Google Scholar

    [83]

    Luo Z, Liu M, Liu H, Zheng X, Luo A, Zhao C, Zhang H, Wen S, Xu W 2013 Opt. Lett. 38 5212Google Scholar

    [84]

    Hao Z, Jiang B, Hou Y, Li C, Yi R, Ji Y, Li J, Li A, Gan X T, Zhao J 2021 Opt. Lett. 46 733Google Scholar

    [85]

    Hao Z, Ma Y, Jiang B, Hou Y, Li A, Yi R, Gan X T, Zhao J 2022 Sci. China Inf. Sci. 65 162403Google Scholar

    [86]

    Ma Y, Jiang B, Guo Y, Zhang P, Cheng T, Gan X T, Zhao J 2022 Opt. Express 30 32438Google Scholar

    [87]

    Chen H T, Corboliou V, Solntsev A S, Choi D Y, Vincenti M A, de Ceglia D, de Angelis C, Lu Y Q, Neshev D N 2017 Light Sci. Appl. 6 e17060Google Scholar

    [88]

    Li D, Wei C, Song J, Huang X, Wang F, Liu K, Xiong W, Hong X, Cui B, Feng A, Jiang L, Lu Y Q 2019 Nano Lett. 19 4195Google Scholar

    [89]

    Wang B B, Ji Y F, Gu L P, Fang L, Gan X T, Zhao J L 2022 ACS Photonics 9 1671Google Scholar

    [90]

    Zhu C Y, Zhang Z, Qin J K, Wang Z, Wang C, Miao P, Liu Y, Huang P Y, Zhang Y, Xu K, Zhen L, Chai Y, Xu C Y 2023 Nat. Commun. 14 2521Google Scholar

    [91]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Stryland E W V 1990 IEEE J. Quantum Electron. 26 760Google Scholar

    [92]

    Zhang H, Virally S, Bao Q, Kian Ping L, Massar S, Godbout N, Kockaert P 2012 Opt. Lett. 37 1856Google Scholar

    [93]

    Demetriou G, Bookey H T, Biancalana F, Abraham E, Wang Y, Ji W, Kar A K 2016 Opt. Express 24 13033Google Scholar

    [94]

    Zheng X, Jia B, Chen X, Gu M 2014 Adv. Mater. 26 2699Google Scholar

    [95]

    Xu X, Zheng X, He F, Wang Z, Subbaraman H, Wang Y, Jia B, Chen R T 2017 Sci. Rep. 7 9646Google Scholar

    [96]

    Bikorimana S, Lama P, Walser A, Dorsinville R, Anghel S, Mitioglu A, Micu A, Kulyuk L 2016 Opt. Express 24 20685Google Scholar

    [97]

    Dong N, Li Y, Zhang S, McEvoy N, Zhang X, Cui Y, Zhang L, Duesberg G, Wang J 2016 Opt. Lett. 41 3936Google Scholar

    [98]

    Yang T, Abdelwahab I, Lin H, Bao Y, Rong Tan S J, Fraser S, Loh K P, Jia B 2018 ACS Photonics 5 4969Google Scholar

    [99]

    Jia L, Wu J, Yang T, Jia B, Moss D J 2020 ACS Appl. Nano Mater. 3 6876Google Scholar

    [100]

    Wu Y, Yao B C, Feng Q Y, Cao X L, Zhou X Y, Rao Y J, Gong Y, Zhang W L, Wang Z G, Chen Y F, Chiang K S 2015 Photon. Res. 3 A64Google Scholar

    [101]

    Zhang H, Healy N, Runge A F J, Huang C C, Hewak D W, Peacock A C 2018 Opt. Lett. 43 3100Google Scholar

    [102]

    Dinu M, Quochi F, Garcia H 2003 Appl. Phys. Lett. 82 2954Google Scholar

    [103]

    Corcoran B, Monat C, Grillet C, Moss D J, Eggleton B J, White T P, O'Faolain L, Krauss T F 2009 Nat. Photon. 3 206Google Scholar

    [104]

    Baba T 2008 Nat. Photon. 2 465Google Scholar

    [105]

    Matsuda N, Kato T, Harada K-i, Takesue H, Kuramochi E, Taniyama H, Notomi M 2011 Opt. Express 19 19861Google Scholar

    [106]

    Zhang Y J, Wang L, Cheng Z Z, Tsang H K 2017 Appl. Phys. Lett. 111 041104Google Scholar

    [107]

    Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A 2010 Phys. Rev. Lett. 105 097401Google Scholar

    [108]

    Liu K, Zhang J F, Xu W, Zhu Z H, Guo C C, Li X J, Qin S Q 2015 Sci. Rep. 5 16734Google Scholar

    [109]

    Ishizawa A, Kou R, Goto T, Tsuchizawa T, Matsuda N, Hitachi K, Nishikawa T, Yamada K, Sogawa T, Gotoh H 2017 Sci. Rep. 7 45520Google Scholar

    [110]

    Feng Q, Cong H, Zhang B, Wei W Q, Liang Y Y, Fang S B, Wang T, Zhang J J 2019 Appl. Phys. Lett. 114 071104Google Scholar

    [111]

    Ji M X, Cai H, Deng L K, Huang Y, Huang Q Z, Xia J S, Li Z Y, Yu J Z, Wang Y 2015 Opt. Express 23 18679Google Scholar

    [112]

    Lin H T, Song Y, Huang Y Z, Kita D, Deckoff-Jones S, Wang K Q, Li L, Li J Y, Zheng H Y, Luo Z Q, Wang H Z, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J J 2017 Nat. Photon. 11 798Google Scholar

    [113]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [114]

    Dreyer D R, Park S, Bielawski C W, Ruoff R S 2010 Chem. Soc. Rev. 39 228Google Scholar

    [115]

    Dreyer D R, Todd A D, Bielawski C W 2014 Chem. Soc. Rev. 43 5288Google Scholar

    [116]

    Yang Y, Lin H, Zhang B Y, Zhang Y, Zheng X, Yu A, Hong M, Jia B 2019 ACS Photonics 6 1033Google Scholar

    [117]

    Wu J, Yang Y, Qu Y, Xu X, Liang Y, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2019 Laser Photon. Rev. 13 1900056Google Scholar

    [118]

    Wu J, Jia L, Zhang Y, Qu Y, Jia B, Moss D J 2021 Adv. Mater. 33 2006415Google Scholar

    [119]

    Jia L, Wu J, Zhang Y, Qu Y, Jia B, Moss D J 2023 Micromachines 14 307Google Scholar

    [120]

    Zhang Y, Wu J, Jia L, Qu Y, Yang Y, Jia B, Moss D J 2023 Laser Photon. Rev. 17 2200512Google Scholar

    [121]

    Wu J, Lin H, Moss D J, Loh K P, Jia B 2023 Nat. Rev. Chem. 7 162Google Scholar

    [122]

    Yang Y, Wu J, Xu X, Liang Y, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2018 APL Photonics 3 120803Google Scholar

    [123]

    Wu J, Yang Y, Qu Y, Jia L, Zhang Y, Xu X, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2020 Small 16 1906563Google Scholar

    [124]

    Zhang Y N, Wu J Y, Yang Y Y, Qu Y, Jia L N, Moein T, Jia B H, Moss D J 2020 ACS Appl. Mater. Interfaces 12 33094Google Scholar

    [125]

    Zhang Y N, Wu J Y, Yang Y Y, Qu Y, Jia L N, Jia B H, Moss D J 2022 Micromachines 13 756Google Scholar

    [126]

    Qu Y, Wu J, Zhang Y, Jia L, Liang Y, Jia B, Moss D J 2021 J. Lightwave Technol. 39 2902Google Scholar

    [127]

    Qu Y, Wu J Y, Yang Y Y, Zhang Y N, Liang Y, El Dirani H, Crochemore R, Demongodin P, Sciancalepore C, Grillet C, Monat C, Jia B H, Moss D J 2020 Adv. Opt. Mater. 8 2001048Google Scholar

    [128]

    Zhang Y, Wu J, Yang Y, Qu Y, Dirani H E, Crochemore R, Sciancalepore C, Demongodin P, Grillet C, Monat C, Jia B, Moss D J 2023 IEEE J. Sel. Top. Quantum Electron. 29 1Google Scholar

    [129]

    Zhang Y, Wu J, Yang Y, Qu Y, Jia L, Dirani H E, Kerdiles S, Sciancalepore C, Demongodin P, Grillet C, Monat C, Jia B, Moss D J 2023 Adv. Mater. Technol. 8 2201796Google Scholar

    [130]

    Liu L H, Xu K, Wan X, Xu J B, Wong C Y, Tsang H K 2015 Photon. Res. 3 206Google Scholar

    [131]

    Zhang Y J, Tao L, Yi D, Xu J B, Tsang H K 2020 J. Opt. 22 025503Google Scholar

    [132]

    Wang Y, Pelgrin V, Gyger S, Uddin G M, Bai X, Lafforgue C, Vivien L, Jöns K D, Cassan E, Sun Z 2021 ACS Photonics 8 2713Google Scholar

    [133]

    He J, Paradisanos I, Liu T, Cadore A R, Liu J, Churaev M, Wang R N, Raja A S, Javerzac-Galy C, Roelli P, Fazio D D, Rosa B L T, Tongay S, Soavi G, Ferrari A C, Kippenberg T J 2021 Nano Lett. 21 2709Google Scholar

    [134]

    Deckoff-Jones S, Pelgrin V, Zhang J, Lafforgue C, Deniel L, Guerber S, Ribeiro-Palau R, Boeuf F, Alonso-Ramos C, Vivien L, Hu J, Serna S 2021 J. Opt. 23 025802Google Scholar

    [135]

    Wang Y H, He S, Gao X Y, Ye P P, Lei L, Dong W C, Zhang X L, Xu P 2022 Photon. Res. 10 50Google Scholar

    [136]

    Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K H, Liu Z 2019 Nat. Photon. 13 754Google Scholar

    [137]

    Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K H, Bai X, Liu Z 2020 Nat. Nanotechnol. 15 987Google Scholar

    [138]

    Ngo G Q, Najafidehaghani E, Gan Z, Khazaee S, Siems M P, George A, Schartner E P, Nolte S, Ebendorff-Heidepriem H, Pertsch T, Tuniz A, Schmidt M A, Peschel U, Turchanin A, Eilenberger F 2022 Nat. Photon. 16 769Google Scholar

    [139]

    George A, Neumann C, Kaiser D, Mupparapu R, Lehnert T, Hübner U, Tang Z, Winter A, Kaiser U, Staude I, Turchanin A 2019 J. Phys. Mater. 2 016001Google Scholar

    [140]

    Chen H, Guo K, Yin J, He S, Qiu G, Zhang M, Xu Z, Zhu G, Yang J, Yan P 2021 Laser Photon. Rev. 15 2000459Google Scholar

    [141]

    Wu J, Ma H, Yin P, Ge Y, Zhang Y, Li L, Zhang H, Lin H 2021 Small Sci. 1 2000053Google Scholar

    [142]

    Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X 2015 Nature 520 69Google Scholar

    [143]

    Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y, Zhang X 2015 Nat. Photon. 9 733Google Scholar

    [144]

    Zhao L, Shang Q, Gao Y, Shi J, Liu Z, Chen J, Mi Y, Yang P, Zhang Z, Du W, Hong M, Liang Y, Xie J, Hu X, Peng B, Leng J, Liu X, Zhao Y, Zhang Y, Zhang Q 2018 ACS Nano 12 9390Google Scholar

    [145]

    Feng J, Li Y, Zhang J, Tang Y, Sun H, Gan L, Ning C-Z 2022 Sci. Adv. 8 eabl5134Google Scholar

    [146]

    Ma R, Sutherland D S, Shi Y 2021 Mater. Today 50 570Google Scholar

    [147]

    Liu N, Yang X, Zhu Z H, Chen F, Zhou Y B, Xu J P, Liu K 2022 Nanoscale 14 49Google Scholar

    [148]

    Kuppadakkath A, Najafidehaghani E, Gan Z, Tuniz A, Ngo G Q, Knopf H, Löchner F J F, Abtahi F, Bucher T, Shradha S, Käsebier T, Palomba S, Felde N, Paul P, Ullsperger T, Schröder S, Szeghalmi A, Pertsch T, Staude I, Zeitner U, George A, Turchanin A, Eilenberger F 2022 Nanophotonics 11 4397Google Scholar

    [149]

    Ngo G Q, George A, Schock R T K, Tuniz A, Najafidehaghani E, Gan Z, Geib N C, Bucher T, Knopf H, Saravi S, Neumann C, Lühder T, Schartner E P, Warren-Smith S C, Ebendorff-Heidepriem H, Pertsch T, Schmidt M A, Turchanin A, Eilenberger F 2020 Adv. Mater. 32 2003826Google Scholar

    [150]

    Cheng Y, Yu W, Xie J, Wang R, Cui G, Cheng X, Li M, Wang K, Li J, Sun Z, Chen K, Liu K, Liu Z 2022 ACS Photonics 9 961Google Scholar

    [151]

    Pelgrin V, Yoon H H, Cassan E, Sun Z 2023 LAM 4 14Google Scholar

    [152]

    de Matos C J S, Rosa H G, Zapata J D, Steinberg D, Maldonado M, Thoroh de Souza E A, de Paula A M, Malard L M, Gomes A S L 2023 J. Opt. Soc. Am. B 40 C111Google Scholar

    [153]

    Liu N, Yang X, Zhang J, Zhu Z H, Liu K 2023 ACS Photonics 10 283Google Scholar

    [154]

    Hu G, Hong X, Wang K, Wu J, Xu H X, Zhao W, Liu W, Zhang S, Garcia-Vidal F, Wang B, Lu P X, Qiu C W 2019 Nat. Photon. 13 467Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [3] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [4] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [5] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [6] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 物理学报, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [7] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [8] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [9] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展. 物理学报, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [10] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [11] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [12] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [13] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [14] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [15] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [16] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [17] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [18] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用. 物理学报, 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [19] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [20] 周培基, 李智勇, 俞育德, 余金中. 硅基光子集成研究进展. 物理学报, 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
计量
  • 文章访问数:  7931
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-06-11
  • 上网日期:  2023-06-29
  • 刊出日期:  2023-09-05

/

返回文章
返回