搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型二维拉胀材料SiGeS的理论预测及其光电性质

祝裕捷 蒋涛 叶小娟 刘春生

引用本文:
Citation:

新型二维拉胀材料SiGeS的理论预测及其光电性质

祝裕捷, 蒋涛, 叶小娟, 刘春生

Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties

Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng
PDF
HTML
导出引用
  • 二维材料由于其在力学、电学以及光学等领域的潜在应用而受到广泛关注. 基于第一性原理计算, 通过有序地排列SiH3SGeH3的Si-S-Ge骨架, 设计了一种全新的二维材料SiGeS. 单层SiGeS具有良好的能量、动力学以及热力学稳定性. SiGeS具有非常罕见的负泊松比. 此外, 单层SiGeS是间接带隙半导体, 其带隙值为1.95 eV. 在应变的作用下, SiGeS可转变为带隙范围为1.32—1.58 eV的直接带隙半导体, 可被应用在光学或半导体领域. 同时, 本征SiGeS拥有优异光吸收能力, 其最高光吸收系数可达约105 cm–1, 吸收范围主要在可见光到紫外波段. 在应变下, 光吸收范围可覆盖到整个红外波段. 这些有趣的性质使得SiGeS成为一种多功能材料, 有望被用于纳米电子、纳米力学以及纳米光学等领域.
    Two-dimensional (2D) materials have aroused tremendous interest due to their great potential applications in electronic, optical, and mechanical devices. We theoretically design a new 2D material SiGeS by regularly arranging the Si-S-Ge skeleton of SiH3SGeH3. Based on first-principles calculation, the structure, stability, electronic properties, mechanical properties, and optical properties of SiGeS are systematically investigated. Monolayer SiGeS is found to be energetically, dynamically, and thermally stable. Remarkably, the SiGeS displays a unique negative Poisson’s ratio. Besides, the SiGeS is an indirect-semiconductor with a band gap of 1.95 eV. The band gap can be modulated effectively by applying external strains. An indirect-to-direct band gap transition can be observed when the tensile strain along the x axial or biaxial direction is greater than +3%, which is highly desirable for applications in optical and semiconductor technology. Moreover, pristine SiGeS has a high absorption coefficient (~105 cm–1) in a visible-to-ultraviolet region. Under tensile strain along the x axial direction, the absorption edge of SiGeS has a red shift, which makes it cover the whole region of solar spectrum. These intriguing properties make the SiGeS a competitive multifunctional material for nanomechanic and optoelectronic applications.
      通信作者: 刘春生, csliu@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61974068)资助的课题.
      Corresponding author: Liu Chun-Sheng, csliu@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974068).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [3]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [4]

    Zhu F F, Chen W F, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [5]

    Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942Google Scholar

    [6]

    Bai Y, Deng K, Kan E 2015 RSC Adv. 5 18352Google Scholar

    [7]

    Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [8]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [9]

    Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J, Baek J B 2015 Nat. Commun. 6 6486Google Scholar

    [10]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76Google Scholar

    [11]

    Srinivasu K, Modak B, Ghosh S K 2014 J. Phys. Chem. C 118 26479Google Scholar

    [12]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [13]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [14]

    Demirci S, Avazlı N, Durgun E, Cahangirov S 2017 Phys. Rev. B 95 115409Google Scholar

    [15]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [16]

    Jiang J W, Park H S 2014 Nat. Commun. 5 4727Google Scholar

    [17]

    Zhuang H L, Singh A K, Hennig R G 2013 Phys. Rev. B 87 165415Google Scholar

    [18]

    Wang H, Li X, Yang J 2016 ChemPhysChem 17 2100Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Liu H, Du Y, Deng Y, Ye P D 2015 Chem. Soc. Rev. 44 2732Google Scholar

    [21]

    Sun M, Schwingenschlögl U 2020 Phys. Rev. Appl. 14 044015Google Scholar

    [22]

    Chae K, Son Y W 2019 Nano Lett. 19 2694Google Scholar

    [23]

    Gao Z, Dong X, Li N, Ren J 2017 Nano Lett. 17 772Google Scholar

    [24]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [25]

    Wang B, König M, Bromley C J, Yoon B, Treanor M J, Garrido Torres J A, Caffio M, Grillo F, Früchtl H, Richardson N V, Esch F, Heiz U, Landman U, Schaub R 2017 J. Phys. Chem. C 121 9413Google Scholar

    [26]

    Khan M H, Moradi M, Dakhchoune M, Rezaei M, Huang S Q, Zhao J, Agrawal K V 2019 Carbon 153 458Google Scholar

    [27]

    Tian Y, Hu Z, Yang Y, Wang X, Chen X, Xu H, Wu Q, Ji W, Chen Y 2004 J. Am. Chem. Soc. 126 1180Google Scholar

    [28]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470Google Scholar

    [29]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123Google Scholar

    [30]

    Park J H, Park J C, Yun S J, Kim H, Luong D H, Kim S M, Choi S H, Yang W, Kong J, Kim K K, Lee Y H 2014 ACS Nano 8 8520Google Scholar

    [31]

    Beniwal S, Hooper J, Miller D P, Costa P S, Chen G, Liu S Y, Dowben P A, Sykes E C, Zurek E, Enders A 2017 ACS Nano 11 2486Google Scholar

    [32]

    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320Google Scholar

    [33]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538Google Scholar

    [34]

    Liu B, Fathi M, Chen L, Abbas A, Ma Y, Zhou C 2015 ACS Nano 9 6119Google Scholar

    [35]

    Finch M A, Van Dyke C H 1975 Inorg. Chem. 14 136Google Scholar

    [36]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [39]

    Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [40]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [41]

    Savrasov S Y, Savrasov D Y 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 16487Google Scholar

    [42]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [43]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [44]

    Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, Ganz E 2015 J. Am. Chem. Soc. 137 2757Google Scholar

    [45]

    Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B:Condens. Matter Mater. Phys. 90 045409Google Scholar

    [46]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393Google Scholar

    [47]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [48]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [49]

    Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T 2017 Physica E 87 228Google Scholar

    [50]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [51]

    Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [52]

    Yang J H, Zhang Y, Yin W J, Gong X G, Yakobson B I, Wei S H 2016 Nano Lett. 16 1110Google Scholar

    [53]

    Li F, Liu X, Wang Y, Li Y 2016 J. Mater. Chem. C 4 2155Google Scholar

    [54]

    Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482Google Scholar

    [55]

    Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835Google Scholar

    [56]

    Lang H, Zhang S, Liu Z 2016 Phys. Rev. B 94 235306Google Scholar

    [57]

    Rawat A, Jena N, Dimple D, De Sarkar A 2018 J. Mater. Chem. A 6 8693Google Scholar

    [58]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [59]

    Miao N, Xu B, Bristowe N C, Zhou J, Sun Z 2017 J. Am. Chem. Soc. 139 11125Google Scholar

    [60]

    Lin J H, Zhang H, Cheng X L, Miyamoto Y 2017 Phys. Rev. B 96 035438Google Scholar

    [61]

    Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar

    [62]

    Luo X, Wang G, Huang Y, Wang B, Yuan H, Chen H 2017 Phys. Chem. Chem. Phys. 19 28216Google Scholar

    [63]

    Lu P, Wu L, Yang C, Liang D, Quhe R, Guan P, Wang S 2017 Sci. Rep. 7 3912Google Scholar

  • 图 1  (a) SiH3SGeH3分子的结构; (b) 优化后SiGeS结构的俯视图和侧视图, 其中虚线矩形框代表其原胞; (c) SiGeS的声子谱; (d) 1000 K下SiGeS的总能量变化和10 ps后的结构快照

    Fig. 1.  (a) Structure of SiH3SGeH3 molecule; (b) top and side views of the optimized structure of SiGeS, where the dashed rectangle represents the unit cell; (c) phono spectrum of SiGeS; (d) total energy evolution of SiGeS at 1000 K and the snapshot of the structure after 10 ps.

    图 2  SiGeS的(a)杨氏模量及(b)泊松比

    Fig. 2.  (a) Young’s modulus and (b) Poisson’s ratio of SiGeS.

    图 3  (a) 单层SiGeS在沿x轴拉伸应变下的结构变化, 其中施加应变与结构变化分别使用蓝色实线箭头及紫色虚线箭头表示; 单层SiGeS在沿(b) x轴及(c) y轴应变下的机械响应

    Fig. 3.  (a) Structure evolution of monolayer SiGeS under tensile strain along x. The applied strain and the structure evolution are marked by blue solid and purple dashed arrows, respectively; mechanical response of SiGeS under the strain along (b) x and (c) y

    图 4  SiGeS的(a)能带结构、PDOS及(b) ELF图

    Fig. 4.  (a) Electronic structure, PDOS and (b) ELF profile of SiGeS.

    图 5  SiGeS在施加应变时的(a)带隙值及(b)在ηx+3%, ηx+4%, ηbi+3%ηbi+4%下的能带结构

    Fig. 5.  (a) Band gaps of SiGeS under strain; (b) band structures of SiGeS under the strain of ηx+3%, ηx+4%, ηbi+3%, and ηbi+4%.

    图 6  SiGeS及其在ηx+4%ηbi+4%下的光吸收系数

    Fig. 6.  Absorption coefficients of pristine SiGeS and SiGeS under the strain of ηx+4% and ηbi+4%.

    表 1  SiGeS的有效质量m*, 形变势常数$\left|{{E}}_{\text{1}}\right|$, 面内刚度C2D及载流子迁移率µ

    Table 1.  Effective mass m*, deformation potential constant $\left|{{E}}_{\text{1}}\right|$, in-plane stiffness C2D, and carrier mobility µ of SiGeS.

    DirectionCarrier
    type
    m*/m0$\left|{{E} }_{\text{1} }\right|$/
    eV
    C2D/
    (N·m–1)
    µ/
    (cm2·V–1·s–1)
    xElectron0.879.0289.7322.24
    Hole11.120.953.02
    yElectron1.109.8063.0915.41
    Hole2.535.846.38
    下载: 导出CSV
  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [3]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [4]

    Zhu F F, Chen W F, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [5]

    Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942Google Scholar

    [6]

    Bai Y, Deng K, Kan E 2015 RSC Adv. 5 18352Google Scholar

    [7]

    Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [8]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [9]

    Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J, Baek J B 2015 Nat. Commun. 6 6486Google Scholar

    [10]

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76Google Scholar

    [11]

    Srinivasu K, Modak B, Ghosh S K 2014 J. Phys. Chem. C 118 26479Google Scholar

    [12]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [13]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [14]

    Demirci S, Avazlı N, Durgun E, Cahangirov S 2017 Phys. Rev. B 95 115409Google Scholar

    [15]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [16]

    Jiang J W, Park H S 2014 Nat. Commun. 5 4727Google Scholar

    [17]

    Zhuang H L, Singh A K, Hennig R G 2013 Phys. Rev. B 87 165415Google Scholar

    [18]

    Wang H, Li X, Yang J 2016 ChemPhysChem 17 2100Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Liu H, Du Y, Deng Y, Ye P D 2015 Chem. Soc. Rev. 44 2732Google Scholar

    [21]

    Sun M, Schwingenschlögl U 2020 Phys. Rev. Appl. 14 044015Google Scholar

    [22]

    Chae K, Son Y W 2019 Nano Lett. 19 2694Google Scholar

    [23]

    Gao Z, Dong X, Li N, Ren J 2017 Nano Lett. 17 772Google Scholar

    [24]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [25]

    Wang B, König M, Bromley C J, Yoon B, Treanor M J, Garrido Torres J A, Caffio M, Grillo F, Früchtl H, Richardson N V, Esch F, Heiz U, Landman U, Schaub R 2017 J. Phys. Chem. C 121 9413Google Scholar

    [26]

    Khan M H, Moradi M, Dakhchoune M, Rezaei M, Huang S Q, Zhao J, Agrawal K V 2019 Carbon 153 458Google Scholar

    [27]

    Tian Y, Hu Z, Yang Y, Wang X, Chen X, Xu H, Wu Q, Ji W, Chen Y 2004 J. Am. Chem. Soc. 126 1180Google Scholar

    [28]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470Google Scholar

    [29]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123Google Scholar

    [30]

    Park J H, Park J C, Yun S J, Kim H, Luong D H, Kim S M, Choi S H, Yang W, Kong J, Kim K K, Lee Y H 2014 ACS Nano 8 8520Google Scholar

    [31]

    Beniwal S, Hooper J, Miller D P, Costa P S, Chen G, Liu S Y, Dowben P A, Sykes E C, Zurek E, Enders A 2017 ACS Nano 11 2486Google Scholar

    [32]

    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320Google Scholar

    [33]

    Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538Google Scholar

    [34]

    Liu B, Fathi M, Chen L, Abbas A, Ma Y, Zhou C 2015 ACS Nano 9 6119Google Scholar

    [35]

    Finch M A, Van Dyke C H 1975 Inorg. Chem. 14 136Google Scholar

    [36]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [39]

    Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [40]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [41]

    Savrasov S Y, Savrasov D Y 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 16487Google Scholar

    [42]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [43]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [44]

    Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, Ganz E 2015 J. Am. Chem. Soc. 137 2757Google Scholar

    [45]

    Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B:Condens. Matter Mater. Phys. 90 045409Google Scholar

    [46]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393Google Scholar

    [47]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [48]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [49]

    Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T 2017 Physica E 87 228Google Scholar

    [50]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [51]

    Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [52]

    Yang J H, Zhang Y, Yin W J, Gong X G, Yakobson B I, Wei S H 2016 Nano Lett. 16 1110Google Scholar

    [53]

    Li F, Liu X, Wang Y, Li Y 2016 J. Mater. Chem. C 4 2155Google Scholar

    [54]

    Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482Google Scholar

    [55]

    Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835Google Scholar

    [56]

    Lang H, Zhang S, Liu Z 2016 Phys. Rev. B 94 235306Google Scholar

    [57]

    Rawat A, Jena N, Dimple D, De Sarkar A 2018 J. Mater. Chem. A 6 8693Google Scholar

    [58]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [59]

    Miao N, Xu B, Bristowe N C, Zhou J, Sun Z 2017 J. Am. Chem. Soc. 139 11125Google Scholar

    [60]

    Lin J H, Zhang H, Cheng X L, Miyamoto Y 2017 Phys. Rev. B 96 035438Google Scholar

    [61]

    Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar

    [62]

    Luo X, Wang G, Huang Y, Wang B, Yuan H, Chen H 2017 Phys. Chem. Chem. Phys. 19 28216Google Scholar

    [63]

    Lu P, Wu L, Yang C, Liang D, Quhe R, Guan P, Wang S 2017 Sci. Rep. 7 3912Google Scholar

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [3] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [5] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [6] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究. 物理学报, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [7] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [8] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [9] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [10] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [11] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [12] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [13] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [14] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [15] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [16] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算. 物理学报, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [17] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [18] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  4206
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-04-05
  • 上网日期:  2022-07-22
  • 刊出日期:  2022-08-05

/

返回文章
返回