搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维磁性材料的物性研究及性能调控

蒋小红 秦泗晨 幸子越 邹星宇 邓一帆 王伟 王琳

引用本文:
Citation:

二维磁性材料的物性研究及性能调控

蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳

Study on physical properties and magnetism controlling of two-dimensional magnetic materials

Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin
PDF
HTML
导出引用
  • 以石墨烯和二硫化钼为代表的二维材料, 由于具有良好的电学、热学、光学以及力学性质, 近年来成为了科学界一大研究热点. 而作为二维材料的分支, 二维磁性材料由于具有磁各向异性、单层磁有序等特殊性质, 特别是磁性还可借助多种物理场进行调控, 使其具有丰富的物理特性和潜在的应用价值, 逐渐受到研究者的普遍关注. 本文详细总结了二维磁性材料的种类类型、合成方法、基本特性以及表征手段, 系统归纳了关于二维磁性材料物性调控方面的研究工作, 并对二维磁性材料的未来研究方向和挑战进行简单的展望.
    Two-dimensional (2D) materials represented by graphene and molybdenum disulfide (MoS2) have attracted much attention in recent years due to their advantages in electrical, thermal, optical and mechanical properties. As a branch of 2D materials, 2D magnetic materials have special properties such as magnetic anisotropy and single-layer magnetic order. Especially, their magnetism can also be controlled by a variety of physical fields, and it possesses various physical properties and potential applications. Therefore, they have received widespread attention of researchers gradually. In this article, we summarize the types, synthesis methods, basic characteristics and characterization methods of 2D magnetic materials in detail, and the magnetism controlling of 2D magnetic materials as well. Finally, a simple outlook on the research directions and future challenges of 2D magnetic materials is given.
      通信作者: 王伟, iamwwang@njtech.edu.cn ; 王琳, iamlwang@njtech.edu.cn
    • 基金项目: 国家重点研发计划青年项目(批准号: 2020YFA0308900)、国家自然科学基金(批准号: 92064010, 61801210, 91833302)、江苏省自然科学基金(批准号: BK20180686)、江苏省特聘教授和江苏省六大人才高峰基金(批准号: XYDXX-021)、中央高校基本科研业务费、陕西省重点研发项目(批准号: 2020GXLH-Z-020, 2020GXLH-Z-027)和西北工业大学硕士研究生创意创新种子基金(批准号: CX2020287)资助的课题
      Corresponding author: Wang Wei, iamwwang@njtech.edu.cn ; Wang Lin, iamlwang@njtech.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFA0308900), the National Natural Science Foundation of China (Grant Nos. 92064010, 61801210, 91833302), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180686), the Funding for “Distinguished Professors” and “High-level Talents in Six Industries” of Jiangsu Province, China (Grant No. XYDXX-021), the Fundamental Research Fund for the Central Universities, China, the Key Research and Development Program of Shaanxi Province, China (Grant Nos. 2020GXLH-Z-020, 2020GXLH-Z-027), and the Creative Innovation Seed Fund of Northwestern Polytechnical University for Postgraduate Students, China (Grant No. CX2020287)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [3]

    Sangwan V K, Hersam M C 2018 Annu. Rev. Phys. Chem. 69 299Google Scholar

    [4]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [5]

    Wang W, Wu X, Zhang J 2015 J. Nanomater. 2015 198126Google Scholar

    [6]

    Zhang X Y, Hou L L, Ciesielski A, Samori P 2016 Adv. Energy Mater. 6 1600671Google Scholar

    [7]

    Fu J B, Xu W Q, Chen X, Zhang S F, Zhang W J, Suo P, Lin X, Wang J, Jin Z M, Liu W M, Ma G H 2020 J. Phys. Chem. C 124 10719Google Scholar

    [8]

    Liu B W, Zhang Z, Liao K, Wu R, Zhu C, Xie H G, Zha C Y, Yin Y, Jiang X H, Qin S C, Wang W, Ouyang G, Qin T S, Wang L, Huang W 2020 Appl. Surf. Sci. 523 146371Google Scholar

    [9]

    Zong X R, Hu H M, Ouyang G, Wang J W, Shi R, Zhang L, Zeng Q S, Zhu C, Chen S H, Cheng C, Wang B, Zhang H, Liu Z, Huang W, Wang T H, Wang L, Chen X L 2020 Light-Sci. Appl. 9 114Google Scholar

    [10]

    Chen X L, Zhou Z S, Deng B C, Wu Z F, Xia F N, Cao Y, Zhang L, Huang W, Wang N, Wang L 2019 Nano Today 27 99Google Scholar

    [11]

    Gatensby R, McEvoy N, Lee K, Hallam T, Berner N C, Rezvani E, Winters S, O'Brien M, Duesberg G S 2014 Appl. Surf. Sci. 297 139Google Scholar

    [12]

    Ou Z W, Wang T, Tang J B, Zong X R, Wang W, Guo Q B, Xu Y H, Zhu C, Wang L, Huang W, Xu H X 2020 Adv. Opt. Mater. 8 2000201Google Scholar

    [13]

    Voevodin A A, Waite A R, Bultman J E, Hu J J, Muratore C 2015 Surf. Coat. Technol. 280 260Google Scholar

    [14]

    Reinwald M, Wurstbauer U, Doppe M, Kipferl W, Wagenhuber K, Tranitz H P, Weiss D, Wegscheider W 2005 J. Cryst. Growth 278 690Google Scholar

    [15]

    Nazmul A M, Banshchikov A G, Shimizu H, Tanaka M 2001 J. Cryst. Growth 227 874Google Scholar

    [16]

    Kobune M, Furotani R, Fujita S, Kikuchi K, Kikuchi T, Fujisawa H, Shimizu M, Fukumuro N 2016 Jpn. J. Appl. Phys. 55 10ta01Google Scholar

    [17]

    Paek W B, Kim J, Lim S H 2004 Phys. Status Solidi B 241 1521Google Scholar

    [18]

    Redjdal N, Salah H, Hauet T, Menari H, Cherif S M, Gabouze N, Azzaz M 2014 Thin Solid Films 552 164Google Scholar

    [19]

    Bhuvaneswari P V, Ramamurthi K, Babu R R, Babu S M 2015 Appl. Phys. A 120 1113Google Scholar

    [20]

    Mohamed R B, Nasina M R, Shaik K, Narayananellore S K, Kuppan M 2014 J. Supercond. Novel. Magn. 27 2147Google Scholar

    [21]

    Awana G, Cox C, Venkat G, Morrison K, Zhou Z X, Backes D 2020 Mater. Res. Express 7 106406Google Scholar

    [22]

    Farrell I L, Hyndman A R, Reeves R J, Williams G V M, Granville S 2017 Thin Solid Films 625 24Google Scholar

    [23]

    Miao Y P, Huang Y H, Fang Q L, Yang Z, Xu K W, Ma F, Chu P K 2016 J. Mater. Sci. 51 9514Google Scholar

    [24]

    Kaloni T P 2014 J. Phys. Chem. C 118 25200Google Scholar

    [25]

    Mao Y L, Guo G, Yuan J M, Zhong J X 2019 Appl. Surf. Sci. 464 236Google Scholar

    [26]

    Ersan F, Arkin H, Akturk E 2017 RSC Adv. 7 37815Google Scholar

    [27]

    Roldan R, Goerbig M O, Fuchs J N 2010 Semicond. Sci. Technol. 25 034005Google Scholar

    [28]

    Romero-Muniz C, Pou P, Perez R 2020 Carbon 159 102Google Scholar

    [29]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [30]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [31]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [32]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [33]

    Meena S, Anudeep K 2020 J. Supercond. Novel. Magn. 33 1447Google Scholar

    [34]

    Sheng H H, Zhu Y J, Bai D M, Wu X S, Wang J L 2020 Nanotechnology 31 315713Google Scholar

    [35]

    Yang J J, Wang J, Liu Q, Xu R, Sun Y L, Li Z P, Gao F M, Xia M R 2020 J. Magn. Magn. Mater. 502 851Google Scholar

    [36]

    Serri M, Cucinotta G, Poggini L, Serrano G, Sainctavit P, Strychalska-Nowak J, Politano A, Bonaccorso F, Caneschi A, Cava R J, Sessoli R, Ottaviano L, Klimczuk T, Pellegrini V, Mannini M 2020 Adv. Mater. 32 2000566Google Scholar

    [37]

    Yang J T, Zhou Y, Guo Q L, Dedkov Y, Voloshina E 2020 RSC Adv. 10 851Google Scholar

    [38]

    Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y H, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424Google Scholar

    [39]

    Wildes A R, Lancon D, Chan M K, Weickert F, Harrison N, Simonet V, Zhitomirsky M E, Gvozdikova M V, Ziman T, Ronnow H M 2020 Phys. Rev. B 101 024415Google Scholar

    [40]

    Sun Y, Luo X 2019 Phys. Status Solidi B 256 1900052Google Scholar

    [41]

    Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y, Saitoh E 2019 Phys. Rev. B 100 060402Google Scholar

    [42]

    Kang S, Kang S, Yu J 2019 J. Electron. Mater. 48 1441Google Scholar

    [43]

    Xu C S, Feng J S, Xiang H J, Bellaiche L 2018 Npj Comput. Mater. 4 57Google Scholar

    [44]

    Liu H T, Bao L H, Zhou Z, Che B Y, Zhang R Z, Bian C, Ma R S, Wu L M, Yang H F, Li J J, Gu C Z, Shen C M, Du S X, Gao H J 2019 Nano Lett. 19 4551Google Scholar

    [45]

    Zheng G L, Xie W Q, Albarakati S, Algarni M, Tan C, Wang Y H, Peng J Y, Partridge J, Farrar L, Yi J B, Xiong Y M, Tian M L, Zhao Y J, Wang L 2020 Phys. Rev. Lett. 125 047202Google Scholar

    [46]

    Zhu R, Zhang W, Shen W, Wong P K J, Wang Q X, Liang Q J, Tian Z, Zhai Y, Qiu C W, Wee A T S 2020 Nano Lett. 20 5030Google Scholar

    [47]

    Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar

    [48]

    Miao N H, Xu B, Zhu L G, Zhou J, Sun Z M 2018 J. Am. Chem. Soc. 140 2417Google Scholar

    [49]

    Cortie D L, Causer G L, Rule K C, Fritzsche H, Kreuzpaintner W, Klose F 2020 Adv. Funct. Mater. 30 1901414Google Scholar

    [50]

    Li H, Ruan S C, Zeng Y J 2019 Adv. Mater. 31 1900065Google Scholar

    [51]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [52]

    Li X X, Wu X J, Yang J L 2014 J. Am. Chem. Soc. 136 11065Google Scholar

    [53]

    Lv P, Li Y L, Wang J F 2020 Phys. Chem. Chem. Phys. 22 11266Google Scholar

    [54]

    Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C, Xiong Q H 2016 2 D Mater. 3 031009Google Scholar

    [55]

    Xie Q Y, Wu M, Chen L M, Bai G, Zou W Q, Wang W, He L 2019 Chin. Phys. B 28 056102Google Scholar

    [56]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 4165Google Scholar

    [57]

    McGuire M A, Clark G, Santosh K C, Chance W M, Jellison G E, Cooper V R, Xu X D, Sales B C 2017 Phys. Rev. Mater. 1 014001Google Scholar

    [58]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 085401Google Scholar

    [59]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [60]

    Jiang P H, Wang C, Chen D C, Zhong Z C, Yuan Z, Lu Z Y, Ji W 2019 Phys. Rev. B 99 144401Google Scholar

    [61]

    Chen W O, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [62]

    Zhang Y J, Wu X H, Lyu B B, Wu M H, Zhao S X, Chen J Y, Jia M Y, Zhang C S, Wang L, Wang X W, Chen Y Z, Mei J W, Taniguchi T, Watanabe K, Yan H G, Liu Q H, Huang L, Zhao Y, Huang M Y 2020 Nano Lett. 20 729Google Scholar

    [63]

    Seyler K L, Zhong D, Huang B, Linpeng X Y, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C, Xu X D 2018 Nano Lett. 18 3823Google Scholar

    [64]

    Zhang J Y, Zhao B, Zhou T, Xue Y, Ma C L, Yang Z Q 2018 Phys. Rev. B 97 085401Google Scholar

    [65]

    Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y, Kim Y J 2014 Phys. Rev. B 90 041112Google Scholar

    [66]

    Kim H S, Shankar V V, Catuneanu A, Kee H Y 2015 Phys. Rev. B 91 241110Google Scholar

    [67]

    Zhou Y G, Lu H F, Zu X T, Gao F 2016 Sci. Rep. 6 19407Google Scholar

    [68]

    He J J, Ma S Y, Lyu P B, Nachtigall P 2016 J. Mater. Chem. C 4 2518Google Scholar

    [69]

    Kong T, Stolze K, Timmons E I, Tao J, Ni D R, Guo S, Yang Z, Prozorov R, Cava R J 2019 Adv. Mater. 31 1808074Google Scholar

    [70]

    Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 Phys. Rev. B 99 041402Google Scholar

    [71]

    Tian S J, Zhang J F, Li C H, Ying T P, Li S Y, Zhang X, Liu K, Lei H C 2019 J. Am. Chem. Soc. 141 5326Google Scholar

    [72]

    Kong T, Guo S, Ni D R, Cava R J 2019 Phys. Rev. Mater. 3 084419Google Scholar

    [73]

    Prayitno T B, Ishii F 2019 J. Phys. Soc. Jpn. 88 104705Google Scholar

    [74]

    Yan Z P, Li N N, Wang L Y, Yu Z H, Li M T, Zhang J B, Li X D, Yang K, Gao G Y, Wang L 2020 J. Phys. Chem. C 124 23317Google Scholar

    [75]

    Feng Y L, Wu X M, Hu L, Gao G Y 2020 J. Mater. Chem. C 8 14353Google Scholar

    [76]

    Zhu Y Y, Li H L, Chen T, Liu D S, Zhou Q H 2020 Vacuum 182 109694Google Scholar

    [77]

    Teng S K, Mao X J, Liu Z, Liu Y, Xu X T, Li L Y, Xie X J, Fan S S, Zhou G X, Li J, Li J 2020 New J. Phys. 22 103061Google Scholar

    [78]

    Han H C, Zheng H L, Wang Q S, Yan Y 2020 Phys. Chem. Chem. Phys. 22 26917Google Scholar

    [79]

    Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544Google Scholar

    [80]

    Bernasconi M, Marra G L, Benedek G, Miglio L, Balkanski M, Scagliotti M, Julien C, Jouanne M 1988 Phys. Rev. B 38 12089Google Scholar

    [81]

    Susner M A, Chyasnavichyus M, McGuire M A, Ganesh P, Maksymovych P 2017 Adv. Mater. 29 1602852Google Scholar

    [82]

    Lancon D, Ewings R A, Guidi T, Formisano F, Wildes A R 2018 Phys. Rev. B 98 134414Google Scholar

    [83]

    Joy P A, Vasudevan S 1992 Phys. Rev. B 46 5425Google Scholar

    [84]

    Wildes A R, Simonet V, Ressouche E, Ballou R, McIntyre G J 2017 J. Phys.-Condens. Mater. 29 056102Google Scholar

    [85]

    Gusmeao R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975Google Scholar

    [86]

    Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczynski J, Kossacki P, Wildes A R, Gremaud B, Saul A 2020 2D Mater. 7 035030Google Scholar

    [87]

    Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Noh T W, Park J G 2016 Sci. Rep. 6 20904Google Scholar

    [88]

    Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q H, Kloc C 2016 ACS Nano 10 1738Google Scholar

    [89]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [90]

    Xing W Y, Qiu L Y, Wang X R, Yao Y Y, Ma Y, Cai R R, Jia S, Xie X C, Han W 2019 Phys. Rev. X 9 011026Google Scholar

    [91]

    Xie Q Y, Liu Y, Wu M, Lu H Y, Wang W, He L, Wu X S 2019 Mater. Lett. 246 60Google Scholar

    [92]

    Carteaux V, Moussa F, Spiesser M 1995 Europhys. Lett. 29 251Google Scholar

    [93]

    Zhuang H L L, Xie Y, Kent P R C, Ganesh P 2015 Phys. Rev. B 92 035407Google Scholar

    [94]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [95]

    Li Y F, Wang W, Guo W, Gu C Y, Sun H Y, He L, Zhou J, Gu Z B, Nie Y F, Pan X Q 2018 Phys. Rev. B 98 125127Google Scholar

    [96]

    Zhang J X, Cai X C, Xia W, Liang A J, Huang J W, Wang C W, Yang L X, Yuan H T, Chen Y L, Zhang S L, Guo Y F, Liu Z K, Liu G 2019 Phys. Rev. Lett. 123 047203Google Scholar

    [97]

    Lohmann M, Su T, Niu B, Hou Y S, Alghamdi M, Aldosary M, Xing W Y, Zhong J N, Jia S, Han W, Wu R Q, Cui Y T, Shi J 2019 Nano Lett. 19 2397Google Scholar

    [98]

    Ostwal V, Shen T T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [99]

    Lin M W, Zhuang H L L, Yan J Q, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L B, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, Xiao K 2016 J. Mater. Chem. C 4 315Google Scholar

    [100]

    Gonzalez-Herrero H, Gomez-Rodriguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [101]

    Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K, Grigorieva I V 2012 Nat. Phys. 8 199Google Scholar

    [102]

    Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Neto A H C, Ozyilmaz B 2014 Nat. Commun. 5 4875Google Scholar

    [103]

    Gao D Q, Xue Q X, Mao X Z, Wang W X, Xu Q, Xue D S 2013 J. Mater. Chem. C 1 5909Google Scholar

    [104]

    Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, Huang B B 2012 ACS Nano 6 1695Google Scholar

    [105]

    Arnold F, Stan R M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z S, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009Google Scholar

    [106]

    Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z J, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [107]

    Chua R, Yang J, He X Y, Yu X J, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693Google Scholar

    [108]

    Liu H T, Xue Y Z, Sho J A, Guzman R A, Zhan P P, Zhou Z, He Y G, Bian C, Wu L M, Ma R S, Chen J C, Yan J H, Yang H T, Shen C M, Zhou W, Bao L H, Gao H J 2019 Nano Lett. 19 8572Google Scholar

    [109]

    May A F, Calder S, Cantoni C, Cao H B, McGuire M A 2016 Phys. Rev. B 93 014411Google Scholar

    [110]

    Zhuang H L L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [111]

    Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L, Lee C 2018 Nat. Commun. 9 1554Google Scholar

    [112]

    Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Jang B G, Kim H, Eom G, Seo S Y, Stania R, Muntwiler M, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B I, Jo M H, Yeom H W, Choi S Y, Shim J H, Kim J S 2020 Sci. Adv. 6 eaay8912Google Scholar

    [113]

    Duong D L, Yun S J, Lee Y H 2017 ACS Nano 11 11803Google Scholar

    [114]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z Y, Liu Y H, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [115]

    Li Z X, Xia W, Su H, Yu Z H, Fu Y P, Chen L M, Wang X, Yu N, Zou Z Q, Guo Y F 2020 Sci. Rep. 10 15345Google Scholar

    [116]

    Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [117]

    Zhang D Q, Shi M J, Zhu T S, Xing D Y, Zhang H J, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [118]

    Ge J, Liu Y Z, Li J H, Li H, Luo T C, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar

    [119]

    Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [120]

    Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443Google Scholar

    [121]

    Hu C W, Ding L, Gordon K N, Ghosh B, Tien H J, Li H X, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J Y, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D S, Xu S Y, Lin H, Cao H B, Chang T R, Dessau D, Ni N 2020 Sci. Adv. 6 eaba4275Google Scholar

    [122]

    Jiang Z, Wang P, Xing J P, Jiang X, Zhao J J 2018 ACS Appl. Mater. Interfaces 10 39032Google Scholar

    [123]

    Zhang T L, Wang Y M, Li H X, Zhong F, Shi J, Wu M H, Sun Z Y, Shen W F, Wei B, Hu W D, Liu X F, Huang L, Hu C G, Wang Z C, Jiang C B, Yang S X, Zhang Q M, Qu Z 2019 ACS Nano 13 11353Google Scholar

    [124]

    Yan S N, Wang P F, Wang C Y, Xu T, Li Z, Cao T J, Chen M Y, Pan C, Cheng B, Sun L T, Liang S J, Miao F 2019 Sci. China Inform. Sci. 62 220407Google Scholar

    [125]

    Qing X M, Li H, Zhong C G, Zhou P X, Dong Z C, Liu J M 2020 Phys. Chem. Chem. Phys. 22 17255Google Scholar

    [126]

    Ferrenti A M, Klemenz S, Lei S M, Song X Y, Ganter P, Lotsch B V, Schoop L M 2020 Inorg. Chem. 59 1176Google Scholar

    [127]

    Li W, Yang Z Y, Hou Y L, Gao S 2020 Prog. Chem. 32 1437Google Scholar

    [128]

    Lu H Y, Wang W, Liu Y, Chen L M, Xie Q Y, Yin H D, Cheng G F, He L 2020 Appl. Surf. Sci. 504 144405Google Scholar

    [129]

    Yu J X, Li J, Zhang W F, Chang H X 2015 Chem. Sci. 6 6705Google Scholar

    [130]

    Li J, Zhao B, Chen P, Wu R, Li B, Xia Q, Guo G, Luo J, Zang K, Zhang Z, Ma H, Sun G, Duan X, Duan X F 2018 Adv. Mater. 30 e1801043Google Scholar

    [131]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [132]

    Yuan J T, Balk A, Guo H, Fang Q Y, Patel S, Zhao X H, Terlier T, Natelson D, Crooker S, Lou J 2019 Nano Lett. 19 3777Google Scholar

    [133]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Wang X R S, Liu Z 2020 Nat. Commun. 11 3729Google Scholar

    [134]

    Yang P F, Zou X L, Zhang Z P, Hong M, Shi J P, Chen S L, Shu J P, Zhao L Y, Jiang S L, Zhou X B, Huan Y H, Xie C Y, Gao P, Chen Q, Zhang Q, Liu Z F, Zhang Y F 2018 Nat. Commun. 9 979Google Scholar

    [135]

    Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar

    [136]

    Dangol R, Dai Z F, Chaturvedi A, Zheng Y, Zhang Y, Dinh K N, Li B, Zong Y, Yan Q Y 2018 Nanoscale 10 4890Google Scholar

    [137]

    Liu L, Yao T, Tan X G, Liu Q H, Wang Z Q, Shen D C, Sun Z H, Wei S Q, Xie Y 2012 Small 8 3752Google Scholar

    [138]

    Feng J, Sun X, Wu C Z, Peng L L, Lin C W, Hu S L, Yang J L, Xie Y 2011 J. Am. Chem. Soc. 133 17832Google Scholar

    [139]

    Yang H, Wang F, Zhang H S, Guo L H, Hu L Y, Wang L F, Xue D J, Xu X H 2020 J. Am. Chem. Soc. 142 4438Google Scholar

    [140]

    Yang Z Y, Zhang H H, Xu J J, Ma R Z, Sasaki T, Zeng Y J, Ruan S C, Hou Y L 2020 Natl. Sci. Rev. 7 841Google Scholar

    [141]

    De Siena M C, Creutz S E, Regan A, Malinowski P, Jiang Q N, Kluherz K T, Zhu G M, Lin Z, De Yoreo J J, Xu X D, Chu J H, Gamelin D R 2020 Nano Lett. 20 2100Google Scholar

    [142]

    Liu S S, Yuan X, Zhou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 Npj 2D Mater. Appl. 1 1Google Scholar

    [143]

    Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J O, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L, Gao H J 2018 Sci. Bull. 63 419Google Scholar

    [144]

    Liu Z L, Lei B, Zhu Z L, Tao L, Qi J, Bao D L, Wu X, Huang L, Zhang Y Y, Lin X, Wang Y L, Du S X, Pantelides S T, Gao H J 2019 Nano Lett. 19 4897Google Scholar

    [145]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 089901Google Scholar

    [146]

    Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130Google Scholar

    [147]

    Kimura A, Matsuno J, Okabayashi J, Fujimori A, Shishidou T, Kulatov E, Kanomata T 2001 Phys. Rev. B 63 224420Google Scholar

    [148]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [149]

    Pathak S, Sharma M 2014 J. Appl. Phys. 115 043906Google Scholar

    [150]

    Zhang G P, Hubner W, Lefkidis G, Bai Y H, George T F 2009 Nat. Phys. 5 499Google Scholar

    [151]

    Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sci. 7 2001722Google Scholar

    [152]

    Liu B, Liu S S, Yang L, Chen Z D, Zhang E Z, Li Z H, Wu J, Ruan X Z, Xiu F X, Liu W Q, He L, Zhang R, Xu Y B 2020 Phys. Rev. Lett. 125 267205Google Scholar

    [153]

    Cai L, Yu C L, Liu L Y, Xia W, Zhou H A, Zhao L, Dong Y Q, Xu T, Wang Z D, Guo Y F, Zhao Y G, Zhang J S, Yang L Y, Yang L X, Jiang W J 2020 Appl. Phys. Lett. 117 192401Google Scholar

    [154]

    Gibson G A, Schultz S 1993 J. Appl. Phys. 73 4516Google Scholar

    [155]

    Niu B, Su T, Francisco B A, Ghosh S, Kargar F, Huang X, Lohmann M, Li J X, Xu Y D, Taniguchi T, Watanabe K, Wu D, Balandin A, Shi J, Cui Y T 2020 Nano Lett. 20 553Google Scholar

    [156]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [157]

    Zhou X H, Brzostowski B, Durajski A P, Liu M Z, Xiang J, Jiang T R, Wang Z Q, Chen S W, Li P G, Zhong Z H, Drzewinski A, Jarosik M W, Szczesniak R, Lai T S, Guo D H, Zhong D Y 2020 J. Phys. Chem. C 124 9416Google Scholar

    [158]

    Tian Y, Gray M J, Ji H W, Cava R J, Burch K S 2016 2 D Mater. 3 025035Google Scholar

    [159]

    Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187Google Scholar

    [160]

    Heron J T, Trassin M, Ashraf K, Gajek M, He Q, Yang S Y, Nikonov D E, Chu Y H, Salahuddin S, Ramesh R 2011 Phys. Rev. Lett. 107 217202Google Scholar

    [161]

    Cao T, Li Z L, Louie S G 2015 Phys. Rev. Lett. 114 236602Google Scholar

    [162]

    Li X X, Yang J L 2014 J. Mater. Chem. C 2 7071Google Scholar

    [163]

    Pan H 2014 Sci. Rep. 4 7524Google Scholar

    [164]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [165]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [166]

    Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [167]

    Zhang W, Zhang L, Wong P K J, Yuan J R, Vinai G, Torelli P, van der Laan G, Feng Y P, Wee A T S 2019 ACS Nano 13 8997Google Scholar

    [168]

    Zhang L M,Huang X Y, Dai H W, Wang M S, Cheng H, Tong L, Li Z, Han X T, Wang X, Ye L, Han J B 2020 Adv. Mater. 32 2002032Google Scholar

    [169]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [170]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [171]

    Jiang T, Liu H R, Huang D, Zhang S, Li Y G, Gong X G, Shen Y R, Liu W T, Wu S W 2014 Nat. Nanotechnol. 9 825Google Scholar

    [172]

    Alegria L D, Ji H, Yao N, Clarke J J, Cava R J, Petta J R 2014 Appl. Phys. Lett. 105 053512Google Scholar

    [173]

    Zhong D, Seyler K L, Linpeng X Y, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C, Xu X D 2017 Sci. Adv. 3 e1603113Google Scholar

  • 图 1  二维磁性材料的简单分类

    Fig. 1.  Simple classification of two-dimensional magnetic materials.

    图 2  (a) Al2O3辅助机械剥离Fe3GeTe2薄片的示意图[32]; (b)在Al2O3薄膜上剥落Fe3GeTe2薄片的光学图片[32]; (c) CVD法合成FeTe纳米片的过程示意图[133]; (d)薄层FeTe纳米片的光学图片[133]; (e)超声液相剥离二维NiPS3的原理图[136]; (f) NiPS3薄片AFM图[136]; (g)分子束外延生长VSe2的原理图[143]; (h)单层VSe2的AFM图[143]

    Fig. 2.  (a) Schematic of Fe3GeTe2 exfoliated by Al2O3-assisted mechanical method[32]; (b) optical image of typical few-layer Fe3GeTe2 flakes exfoliated on top of an Al2O3 thin film[32]; (c) schematic illustration of FeTe nanosheet growth route by CVD[133]; (d) optical image of few-layer FeTe flakes[133]; (e) schematic illustration of NiPS3 growth route by liquid exfoliation[136]; (f) the AFM image of NiPS3 flakes[136]; (g) schematic illustration of VSe2 growth route by molecular beam epitaxy[143]; (h) the AFM image of monolayer VSe2[143].

    图 3  (a)磁圆二色性原理图; (b)和(c)双层和三层CrI3自旋滤波器磁隧道结隧穿电流和反射磁圆二色性(RMCD)随外磁场(μ0H)变化的函数关系曲线, 偏置电压分别为–290 mV和235 mV, 绿色(橙色)曲线表示递减(递增)磁场[59]; (d)不同温度下, 厚度为48 nm的Fe3GeTe2样品RMCD信号随磁场的变化关系[148]; (e)磁光克尔效应原理图; (f)双层Cr2Ge2Te6在不同温度下的克尔旋转信号[30]; (g) CrI3的磁光克尔转角与外加磁场的关系[31]; (h)不同温度下, Ta3FeS6纳米片极向磁光克尔随磁场的变化[151]; (i)在空气环境4个月前后, Ta3FeS6纳米片的MOKE信号随磁场变化[151]

    Fig. 3.  (a) Schematic diagram of magnetic circular dichroism; (b) and (c) tunneling current and reflective magnetic circular dichroism (RMCD) as a function of out-of-plane magnetic field (μ0H) of double spin-filter magnetic tunnel junctions from bilayer and trilayer CrI3 at a selected bias voltage –290 mV and 235 mV, respectively, green (orange) curve corresponds to decreasing (increasing) magnetic field[59]; (d) comparison of RMCD sweeps for Fe3GeTe2 of thickness 48 nm as a function of the magnetic field, respectively[148]; (e) schematic diagram of magneto-optic Kerr effect; (f) Kerr rotation signals of bilayer Cr2Ge2Te6 vary with temperature[30]; (g) the magneto-optic Kerr signals of different CrI3 layers as a function of the magnetic field[31]; (h) the polar MOKE signal of Ta3FeS6 nanosheet as a function of magnetic field at different temperatures[151]; (i) MOKE signal of Ta3FeS6 nanosheet as a function of magnetic field acquired before and after 4 months aging under atmospheric conditions[151].

    图 4  (a)磁力显微镜工作原理图; (b)单层/双层/三层VSe2薄片的MFM相位图像[106]; (c)图(b)中白色虚线对应的MFM图像的地形高度和MFM相位剖面图[106]; (d), (e) Fe3GeTe2分别在204和103 K时MFM图像, (d)的插图为300 K时的MFM图像, 图中白色矩形勾画出了相同的区域[148]; (f) 200 nm厚的CrI3薄片MFM信号作为磁场的函数图[155]; (g) 25 nm厚的CrI3薄片MFM信号作为磁场的函数图[155]; (h)表层和内层的堆叠顺序和自旋方向机理图[155]; (i)扫描隧道显微镜原理图[155]; (j)在热解石墨烯衬底上形成的单层VSe2扫描隧道显微镜图, 单层VSe2优先在阶梯边缘成核[156]; (k)在MoS2衬底上形成的单层VSe2扫描隧道显微镜图, VSe2在MoS2衬底上形成更均匀的单层膜[156]; (l) H型双层CrBr3层间的铁磁性耦合[61]; (m), (n) R型双层CrBr3层间的反铁磁性耦合[61]; (o)八面体的FeCl6单元(顶图)和六边形1T-FeCl2结构的示意图(底图)[157]; (p)具有两种非等边的六边形1T-FeCl2的STM图像[157]

    Fig. 4.  (a) Schematic diagram of magnetic force microscope (MFM); (b) MFM phase image of monolayer/bilayer/trilayer VSe2 flake[106]; (c) topography height and MFM phase profiles of the MFM image corresponding to the white dashed line in panel (b)[106]; (d), (e) MFM domain images for Fe3GeTe2 at 204 K and 103 K, respectively, inset of (d) is the MFM image at 300 K, and the white rectangles outline the same area[148]; (f) MFM signal as a function of magnetic field for 200 nm CrI3 flake; (g) MFM signal as a function of magnetic field for 25 nm CrI3 flake[155]; (h) illustration of the stacking orders and spin configurations insurface and inner layers[155]; (i) schematic diagram of scanning tunneling microscope[155]; (j) the STM image of VSe2 monolayer on HOPG, VSe2 monolayer islands preferentially nucleate at step edges on HOPG[156]; (k) the STM image of VSe2 monolayer on MoS2, the growth of VSe2 monolayer on MoS2 is more uniform and gives rise to larger monolayer islands[156]; (l) ferromagnetic coupling between H-type bilayer CrBr3 layers[61]; (m), (n) antiferromagnetic coupling between R-type bilayer CrBr3 layers[61]; (o) schematic illustration of an octahedral FeCl6 unit (top) and a hexagonal island of FeCl2 with a 1T structure (bottom)[157]; (p) STM image of 1T-FeCl2 with two non-equallateral hexagons[157].

    图 5  (a)少层FePS3拉曼随温度依赖的mapping图[89]; (b)不同厚度下, 少层FePS3的P1a拉曼峰强度随温度的变化[89]; (c)薄层Cr2Ge2Te6样品$ {\rm{E}}_{\rm{g}}^{1} $$ {\rm{E}}_{\rm{g}}^{2} $拉曼峰随温度依赖的mapping图[158]; (d)不同温度下薄层Cr2Ge2Te6样品的原始拉曼图[158]; (e)单层CrI3偏振拉曼光谱随磁场的演化过程[62]; (f)单层CrI3的拉曼强度与磁圆二色的结果比较[62]; (g)双层CrI3偏振拉曼光谱随磁场的演化过程[62]; (h)双层CrI3的拉曼强度与磁圆二色的结果比较[62]; (i)反常霍尔效应的三种机制; (j)四层Fe3GeTe2的剩余霍尔电阻随温度的变化[32]; (k) 2 K温度下, 不同厚度的Fe3GeTe2纳米片的反常霍尔电阻Rxy随磁场的变化关系[111]; (l)不同温度下, 单个Fe3GeTe2的反常霍尔电阻随磁场的变化曲线[142]; (m)不同温度下, Fe3GeTe2/MnTe异质结的反常霍尔电阻随磁场的变化曲线[142]

    Fig. 5.  (a) Temperature dependent Raman mapping of few layers FePS3 temperature dependent[89]; (b) the Raman intensity as a function of temperature for different thickness FePS3 of P1a mode[89]; (c) temperature dependent Raman spectra mapping for Cr2Ge2Te6 of the $ {\rm{E}}_{\rm{g}}^{1} $ and $ {\rm{E}}_{\rm{g}}^{2} $ modes[158]; (d) the original Raman diagram of few layer Cr2Ge2Te6 at different temperatures[158]; (e) the evolution process of polarization Raman spectra for monolayer CrI3 with magnetic field[62]; (f) comparison of Raman strength and MCD for monolayer CrI3[62]; (g) the evolution process of polarization Raman spectra of bilayer CrI3 with magnetic field[62]; (h) comparison of Raman strength and MCD for bilayer CrI3[62]; (i) the mechanism of anomalous Hall effect; (j) the remanent Hall resistance ${R}_{xy}^{\rm r}$ as a function of temperature for four-layer Fe3GeTe2[32]; (k) the Rxy as a function of magnetic field for different thickness Fe3GeTe2 nanosheet at 2 K[111]; (l) the Rxy as a function of magnetic field for Fe3GeTe2 heterojunction at different temperatures[142]; (m) the Rxy as a function of magnetic field for Fe3GeTe2/MnTe heterojunction at different temperatures[142]

    图 6  (a)顶部: 双栅极双层CrI3场效应器件的示意性侧视图, 其中双分子层CrI3被封装在少层石墨烯中, 石墨烯作为平面外输运测量的源极和漏极; 底部: 单双层样品器件的光学显微图. 左下图, 用于单层CrI3的磁化率测量的电极结构, 比例尺为50 μm; 右下图, 用于双层CrI3的磁化率测量的电极结构, 比例尺为20 μm; 红色虚线为双层样品的边界[51]. (b)单层CrI3的磁性随栅极电压(底轴)和诱导掺杂密度(顶轴)变化的函数[51]. (c)双层CrI3中, 在4 K下掺杂密度-磁场相图[51]. (d)少数层h-BN/Cr2Ge2Te6/h-BN范德瓦耳斯异质结器件[94]. (e) 40 K, 负门电压下磁光克尔角随磁场的变化[94]. (f) 40 K, 正门电压下磁光克尔角随磁场的变化[94]

    Fig. 6.  (a) Top: A schematic side view of a dual-gate bilayer CrI3 field-effect device. Bilayer CrI3 is encapsulated in few-layer graphene, which also serves as source and drain electrodes for out-of plane transport measurements. Bottom: An optical micrograph for monolayer and bilayer CrI3 sample devices. Scale bars, 50 μm (left panel) and 20 μm (right panel). The metallic ring structure (left panel) is used to create a magnetic field for the susceptibility measurement for monolayer CrI3. The electrode structure (right panel) is used for the susceptibility measurement for bilayer CrI3, the red dashed line marks the boundary of a bilayer sample in the right panel[51]. (b) The magnetic properties of monolayer CrI3 as a function of gate voltage (bottom axis) and induced doping density (top axis)[51]. (c) Doping density-magnetic field phase diagram at 4 K for monolayer CrI3[51]. (d) Schematic diagram of a few-layered h-BN/Cr2Ge2Te6/h-BN heterojunction[94]. (e) Kerr angle as a function of magnetic field at 40 K for negative gate voltages[94]. (f) Kerr angle as a function of magnetic field at 40 K for positive gate voltages[94].

    图 7  (a) Fe3GeTe2的磁结构随厚度和温度的变化[32]; (b)在三层Fe3GeTe2样品中获得的电导与门电压的关系, 测试温度为330 K, 插图为Fe3GeTe2离子场晶体管[32]示意图, 其中S, D分别代表源电极和漏电极, Vn表示探测电压, 固态栅极覆盖了样品和周围电极[32]; (c)三层Fe3GeTe2在特定栅压下(T = 10 K和T = 240 K)的反常霍尔电阻随磁场的变化曲线[32]; (d)三层Fe3GeTe2温度和栅压的相图[32]; (e)在栅极电压Vg = 2.1 V时, 四层Fe3GeTe2在室温附近的反常霍尔电阻随磁场的变化[32]

    Fig. 7.  (a) Phase diagram of Fe3GeTe2 (FGT) as a function of layer number and temperature[32]. (b) conductance as a function of gate voltage Vg measured in a trilayer FGT device. Data are obtained at T = 330 K, the inset shows a schematic of the FGT device structure and measurement setup, S and D label the source and drain electrodes, respectively, and Vn labels the voltage probes. The solid electrolyte covers both the FGT flake and the side gate[32]. (c) Rxy as a function of external magnetic field recorded at representative gate voltages obtained at T = 10 K and T = 240 K[32]; (d) the phase diagram of the trilayer FGT sample as a function of the gate voltage and temperature[32]; (e) Rxy of four-layer FGT as a function of magnetic field under a gate voltage of Vg = 2.1 V at room temperature[32].

    图 8  (a) CrI3晶体结构, 分别为单斜相(左)和六方相(右)[164]; (b) CrI3隧道结的光学图片[164]; (c) CrI3隧道结的侧面示意图[164]; (d), (e) 在施加压力前(d)后(e)两个2层(2L)和两个5层(5L)区域, 在3.5 K时, MCD随磁场的变化[164]; (f)双层CrI3隧道结中, 不同压力下, 隧道电流随磁场的变化[165]; (g)双层CrI3隧道结施加压力前后RMCD信号随磁场的变化[165]; (h)高压实验装置示意图[165]; (i), (j), (k)三层CrI3中其中任意三点的RMCD随磁场的变化[165]

    Fig. 8.  (a) Crystal structure of CrI3, the monoclinic phase (left) and the hexagonal phase (right)[164]; (b) the optical image of CrI3 tunnel junction[164]; (c) the side view of the CrI3 tunnel junction[164]; (d), (e) the MCD for 2L and 5L CrI3 before (d) and after (e) pressured as a function of the magnetic field under the temperature of 3.5 K[164]; (f) the tunnel current for bilayer CrI3 as a function of the magnetic field under different pressures[165]; (g) the RMCD signal for bilayer CrI3 tunnel junction as a function of the magnetic field before and after pressured[165]; (h) schematic of high-pressure experimental set-up[165]; (i), (j), (k) the RMCD signal for any three points of trilayer CrI3 as a function of the magnetic field[165].

    图 9  (a) Fe3GeTe2及FePS3/Fe3GeTe2异质结的克尔旋转角随磁场的变化曲线[168]; (b) Fe3GeTe2及FePS3/Fe3GeTe2/FePS3异质结的克尔旋转角随磁场的变化曲线[168]; (c)双层反铁磁/铁磁异质结FePS3/Fe3GeTe2和(d)三层反铁磁/铁磁/反铁磁异质结FePS3/Fe3GeTe2/FePS3表现出的交换偏置现象[168]; (e) Fe3GeTe2及FePS3/Fe3GeTe2异质结的克尔旋转角随温度的变化曲线[168]; (f) Fe3GeTe2及FePS3/Fe3GeTe2/FePS3异质结的克尔旋转角随温度的变化曲线[168]

    Fig. 9.  (a) The Kerr rotations as a function of magnetic field for Fe3GeTe2 (FGT, yellow curves) and FePS3/Fe3GeTe2 (FPS/FGT, green curves)[168]; (b) the Kerr rotations as a function of magnetic field for FGT (yellow curves) and FePS3/Fe3GeTe2/FePS3 (FPS/FGT/FPS, green curves)[168]; the exchange bias phenomenon for (c) bilayer antiferromagnetic/ferromagnetic heterojunction FPS/FGT and (d) trilayer antiferromagnetic/ferromagnetic/antiferromagnetic heterojunction FPS/FGT/FPS under the different external magnetic fields[168]; (e) the Kerr rotations as a function of the temperature for FGT (red curve) and FPS/FGT (blue curve)[168]; (f) the Kerr rotation as a function of the temperature for FGT (red curve) and FPS/FGT/FPS (blue curve)[168].

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [3]

    Sangwan V K, Hersam M C 2018 Annu. Rev. Phys. Chem. 69 299Google Scholar

    [4]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [5]

    Wang W, Wu X, Zhang J 2015 J. Nanomater. 2015 198126Google Scholar

    [6]

    Zhang X Y, Hou L L, Ciesielski A, Samori P 2016 Adv. Energy Mater. 6 1600671Google Scholar

    [7]

    Fu J B, Xu W Q, Chen X, Zhang S F, Zhang W J, Suo P, Lin X, Wang J, Jin Z M, Liu W M, Ma G H 2020 J. Phys. Chem. C 124 10719Google Scholar

    [8]

    Liu B W, Zhang Z, Liao K, Wu R, Zhu C, Xie H G, Zha C Y, Yin Y, Jiang X H, Qin S C, Wang W, Ouyang G, Qin T S, Wang L, Huang W 2020 Appl. Surf. Sci. 523 146371Google Scholar

    [9]

    Zong X R, Hu H M, Ouyang G, Wang J W, Shi R, Zhang L, Zeng Q S, Zhu C, Chen S H, Cheng C, Wang B, Zhang H, Liu Z, Huang W, Wang T H, Wang L, Chen X L 2020 Light-Sci. Appl. 9 114Google Scholar

    [10]

    Chen X L, Zhou Z S, Deng B C, Wu Z F, Xia F N, Cao Y, Zhang L, Huang W, Wang N, Wang L 2019 Nano Today 27 99Google Scholar

    [11]

    Gatensby R, McEvoy N, Lee K, Hallam T, Berner N C, Rezvani E, Winters S, O'Brien M, Duesberg G S 2014 Appl. Surf. Sci. 297 139Google Scholar

    [12]

    Ou Z W, Wang T, Tang J B, Zong X R, Wang W, Guo Q B, Xu Y H, Zhu C, Wang L, Huang W, Xu H X 2020 Adv. Opt. Mater. 8 2000201Google Scholar

    [13]

    Voevodin A A, Waite A R, Bultman J E, Hu J J, Muratore C 2015 Surf. Coat. Technol. 280 260Google Scholar

    [14]

    Reinwald M, Wurstbauer U, Doppe M, Kipferl W, Wagenhuber K, Tranitz H P, Weiss D, Wegscheider W 2005 J. Cryst. Growth 278 690Google Scholar

    [15]

    Nazmul A M, Banshchikov A G, Shimizu H, Tanaka M 2001 J. Cryst. Growth 227 874Google Scholar

    [16]

    Kobune M, Furotani R, Fujita S, Kikuchi K, Kikuchi T, Fujisawa H, Shimizu M, Fukumuro N 2016 Jpn. J. Appl. Phys. 55 10ta01Google Scholar

    [17]

    Paek W B, Kim J, Lim S H 2004 Phys. Status Solidi B 241 1521Google Scholar

    [18]

    Redjdal N, Salah H, Hauet T, Menari H, Cherif S M, Gabouze N, Azzaz M 2014 Thin Solid Films 552 164Google Scholar

    [19]

    Bhuvaneswari P V, Ramamurthi K, Babu R R, Babu S M 2015 Appl. Phys. A 120 1113Google Scholar

    [20]

    Mohamed R B, Nasina M R, Shaik K, Narayananellore S K, Kuppan M 2014 J. Supercond. Novel. Magn. 27 2147Google Scholar

    [21]

    Awana G, Cox C, Venkat G, Morrison K, Zhou Z X, Backes D 2020 Mater. Res. Express 7 106406Google Scholar

    [22]

    Farrell I L, Hyndman A R, Reeves R J, Williams G V M, Granville S 2017 Thin Solid Films 625 24Google Scholar

    [23]

    Miao Y P, Huang Y H, Fang Q L, Yang Z, Xu K W, Ma F, Chu P K 2016 J. Mater. Sci. 51 9514Google Scholar

    [24]

    Kaloni T P 2014 J. Phys. Chem. C 118 25200Google Scholar

    [25]

    Mao Y L, Guo G, Yuan J M, Zhong J X 2019 Appl. Surf. Sci. 464 236Google Scholar

    [26]

    Ersan F, Arkin H, Akturk E 2017 RSC Adv. 7 37815Google Scholar

    [27]

    Roldan R, Goerbig M O, Fuchs J N 2010 Semicond. Sci. Technol. 25 034005Google Scholar

    [28]

    Romero-Muniz C, Pou P, Perez R 2020 Carbon 159 102Google Scholar

    [29]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [30]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [31]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [32]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [33]

    Meena S, Anudeep K 2020 J. Supercond. Novel. Magn. 33 1447Google Scholar

    [34]

    Sheng H H, Zhu Y J, Bai D M, Wu X S, Wang J L 2020 Nanotechnology 31 315713Google Scholar

    [35]

    Yang J J, Wang J, Liu Q, Xu R, Sun Y L, Li Z P, Gao F M, Xia M R 2020 J. Magn. Magn. Mater. 502 851Google Scholar

    [36]

    Serri M, Cucinotta G, Poggini L, Serrano G, Sainctavit P, Strychalska-Nowak J, Politano A, Bonaccorso F, Caneschi A, Cava R J, Sessoli R, Ottaviano L, Klimczuk T, Pellegrini V, Mannini M 2020 Adv. Mater. 32 2000566Google Scholar

    [37]

    Yang J T, Zhou Y, Guo Q L, Dedkov Y, Voloshina E 2020 RSC Adv. 10 851Google Scholar

    [38]

    Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y H, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424Google Scholar

    [39]

    Wildes A R, Lancon D, Chan M K, Weickert F, Harrison N, Simonet V, Zhitomirsky M E, Gvozdikova M V, Ziman T, Ronnow H M 2020 Phys. Rev. B 101 024415Google Scholar

    [40]

    Sun Y, Luo X 2019 Phys. Status Solidi B 256 1900052Google Scholar

    [41]

    Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y, Saitoh E 2019 Phys. Rev. B 100 060402Google Scholar

    [42]

    Kang S, Kang S, Yu J 2019 J. Electron. Mater. 48 1441Google Scholar

    [43]

    Xu C S, Feng J S, Xiang H J, Bellaiche L 2018 Npj Comput. Mater. 4 57Google Scholar

    [44]

    Liu H T, Bao L H, Zhou Z, Che B Y, Zhang R Z, Bian C, Ma R S, Wu L M, Yang H F, Li J J, Gu C Z, Shen C M, Du S X, Gao H J 2019 Nano Lett. 19 4551Google Scholar

    [45]

    Zheng G L, Xie W Q, Albarakati S, Algarni M, Tan C, Wang Y H, Peng J Y, Partridge J, Farrar L, Yi J B, Xiong Y M, Tian M L, Zhao Y J, Wang L 2020 Phys. Rev. Lett. 125 047202Google Scholar

    [46]

    Zhu R, Zhang W, Shen W, Wong P K J, Wang Q X, Liang Q J, Tian Z, Zhai Y, Qiu C W, Wee A T S 2020 Nano Lett. 20 5030Google Scholar

    [47]

    Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar

    [48]

    Miao N H, Xu B, Zhu L G, Zhou J, Sun Z M 2018 J. Am. Chem. Soc. 140 2417Google Scholar

    [49]

    Cortie D L, Causer G L, Rule K C, Fritzsche H, Kreuzpaintner W, Klose F 2020 Adv. Funct. Mater. 30 1901414Google Scholar

    [50]

    Li H, Ruan S C, Zeng Y J 2019 Adv. Mater. 31 1900065Google Scholar

    [51]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [52]

    Li X X, Wu X J, Yang J L 2014 J. Am. Chem. Soc. 136 11065Google Scholar

    [53]

    Lv P, Li Y L, Wang J F 2020 Phys. Chem. Chem. Phys. 22 11266Google Scholar

    [54]

    Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C, Xiong Q H 2016 2 D Mater. 3 031009Google Scholar

    [55]

    Xie Q Y, Wu M, Chen L M, Bai G, Zou W Q, Wang W, He L 2019 Chin. Phys. B 28 056102Google Scholar

    [56]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 4165Google Scholar

    [57]

    McGuire M A, Clark G, Santosh K C, Chance W M, Jellison G E, Cooper V R, Xu X D, Sales B C 2017 Phys. Rev. Mater. 1 014001Google Scholar

    [58]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 085401Google Scholar

    [59]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [60]

    Jiang P H, Wang C, Chen D C, Zhong Z C, Yuan Z, Lu Z Y, Ji W 2019 Phys. Rev. B 99 144401Google Scholar

    [61]

    Chen W O, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [62]

    Zhang Y J, Wu X H, Lyu B B, Wu M H, Zhao S X, Chen J Y, Jia M Y, Zhang C S, Wang L, Wang X W, Chen Y Z, Mei J W, Taniguchi T, Watanabe K, Yan H G, Liu Q H, Huang L, Zhao Y, Huang M Y 2020 Nano Lett. 20 729Google Scholar

    [63]

    Seyler K L, Zhong D, Huang B, Linpeng X Y, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C, Xu X D 2018 Nano Lett. 18 3823Google Scholar

    [64]

    Zhang J Y, Zhao B, Zhou T, Xue Y, Ma C L, Yang Z Q 2018 Phys. Rev. B 97 085401Google Scholar

    [65]

    Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y, Kim Y J 2014 Phys. Rev. B 90 041112Google Scholar

    [66]

    Kim H S, Shankar V V, Catuneanu A, Kee H Y 2015 Phys. Rev. B 91 241110Google Scholar

    [67]

    Zhou Y G, Lu H F, Zu X T, Gao F 2016 Sci. Rep. 6 19407Google Scholar

    [68]

    He J J, Ma S Y, Lyu P B, Nachtigall P 2016 J. Mater. Chem. C 4 2518Google Scholar

    [69]

    Kong T, Stolze K, Timmons E I, Tao J, Ni D R, Guo S, Yang Z, Prozorov R, Cava R J 2019 Adv. Mater. 31 1808074Google Scholar

    [70]

    Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 Phys. Rev. B 99 041402Google Scholar

    [71]

    Tian S J, Zhang J F, Li C H, Ying T P, Li S Y, Zhang X, Liu K, Lei H C 2019 J. Am. Chem. Soc. 141 5326Google Scholar

    [72]

    Kong T, Guo S, Ni D R, Cava R J 2019 Phys. Rev. Mater. 3 084419Google Scholar

    [73]

    Prayitno T B, Ishii F 2019 J. Phys. Soc. Jpn. 88 104705Google Scholar

    [74]

    Yan Z P, Li N N, Wang L Y, Yu Z H, Li M T, Zhang J B, Li X D, Yang K, Gao G Y, Wang L 2020 J. Phys. Chem. C 124 23317Google Scholar

    [75]

    Feng Y L, Wu X M, Hu L, Gao G Y 2020 J. Mater. Chem. C 8 14353Google Scholar

    [76]

    Zhu Y Y, Li H L, Chen T, Liu D S, Zhou Q H 2020 Vacuum 182 109694Google Scholar

    [77]

    Teng S K, Mao X J, Liu Z, Liu Y, Xu X T, Li L Y, Xie X J, Fan S S, Zhou G X, Li J, Li J 2020 New J. Phys. 22 103061Google Scholar

    [78]

    Han H C, Zheng H L, Wang Q S, Yan Y 2020 Phys. Chem. Chem. Phys. 22 26917Google Scholar

    [79]

    Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544Google Scholar

    [80]

    Bernasconi M, Marra G L, Benedek G, Miglio L, Balkanski M, Scagliotti M, Julien C, Jouanne M 1988 Phys. Rev. B 38 12089Google Scholar

    [81]

    Susner M A, Chyasnavichyus M, McGuire M A, Ganesh P, Maksymovych P 2017 Adv. Mater. 29 1602852Google Scholar

    [82]

    Lancon D, Ewings R A, Guidi T, Formisano F, Wildes A R 2018 Phys. Rev. B 98 134414Google Scholar

    [83]

    Joy P A, Vasudevan S 1992 Phys. Rev. B 46 5425Google Scholar

    [84]

    Wildes A R, Simonet V, Ressouche E, Ballou R, McIntyre G J 2017 J. Phys.-Condens. Mater. 29 056102Google Scholar

    [85]

    Gusmeao R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975Google Scholar

    [86]

    Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczynski J, Kossacki P, Wildes A R, Gremaud B, Saul A 2020 2D Mater. 7 035030Google Scholar

    [87]

    Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Noh T W, Park J G 2016 Sci. Rep. 6 20904Google Scholar

    [88]

    Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q H, Kloc C 2016 ACS Nano 10 1738Google Scholar

    [89]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [90]

    Xing W Y, Qiu L Y, Wang X R, Yao Y Y, Ma Y, Cai R R, Jia S, Xie X C, Han W 2019 Phys. Rev. X 9 011026Google Scholar

    [91]

    Xie Q Y, Liu Y, Wu M, Lu H Y, Wang W, He L, Wu X S 2019 Mater. Lett. 246 60Google Scholar

    [92]

    Carteaux V, Moussa F, Spiesser M 1995 Europhys. Lett. 29 251Google Scholar

    [93]

    Zhuang H L L, Xie Y, Kent P R C, Ganesh P 2015 Phys. Rev. B 92 035407Google Scholar

    [94]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [95]

    Li Y F, Wang W, Guo W, Gu C Y, Sun H Y, He L, Zhou J, Gu Z B, Nie Y F, Pan X Q 2018 Phys. Rev. B 98 125127Google Scholar

    [96]

    Zhang J X, Cai X C, Xia W, Liang A J, Huang J W, Wang C W, Yang L X, Yuan H T, Chen Y L, Zhang S L, Guo Y F, Liu Z K, Liu G 2019 Phys. Rev. Lett. 123 047203Google Scholar

    [97]

    Lohmann M, Su T, Niu B, Hou Y S, Alghamdi M, Aldosary M, Xing W Y, Zhong J N, Jia S, Han W, Wu R Q, Cui Y T, Shi J 2019 Nano Lett. 19 2397Google Scholar

    [98]

    Ostwal V, Shen T T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [99]

    Lin M W, Zhuang H L L, Yan J Q, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L B, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, Xiao K 2016 J. Mater. Chem. C 4 315Google Scholar

    [100]

    Gonzalez-Herrero H, Gomez-Rodriguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [101]

    Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K, Grigorieva I V 2012 Nat. Phys. 8 199Google Scholar

    [102]

    Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Neto A H C, Ozyilmaz B 2014 Nat. Commun. 5 4875Google Scholar

    [103]

    Gao D Q, Xue Q X, Mao X Z, Wang W X, Xu Q, Xue D S 2013 J. Mater. Chem. C 1 5909Google Scholar

    [104]

    Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, Huang B B 2012 ACS Nano 6 1695Google Scholar

    [105]

    Arnold F, Stan R M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z S, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009Google Scholar

    [106]

    Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z J, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [107]

    Chua R, Yang J, He X Y, Yu X J, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693Google Scholar

    [108]

    Liu H T, Xue Y Z, Sho J A, Guzman R A, Zhan P P, Zhou Z, He Y G, Bian C, Wu L M, Ma R S, Chen J C, Yan J H, Yang H T, Shen C M, Zhou W, Bao L H, Gao H J 2019 Nano Lett. 19 8572Google Scholar

    [109]

    May A F, Calder S, Cantoni C, Cao H B, McGuire M A 2016 Phys. Rev. B 93 014411Google Scholar

    [110]

    Zhuang H L L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [111]

    Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L, Lee C 2018 Nat. Commun. 9 1554Google Scholar

    [112]

    Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Jang B G, Kim H, Eom G, Seo S Y, Stania R, Muntwiler M, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B I, Jo M H, Yeom H W, Choi S Y, Shim J H, Kim J S 2020 Sci. Adv. 6 eaay8912Google Scholar

    [113]

    Duong D L, Yun S J, Lee Y H 2017 ACS Nano 11 11803Google Scholar

    [114]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z Y, Liu Y H, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [115]

    Li Z X, Xia W, Su H, Yu Z H, Fu Y P, Chen L M, Wang X, Yu N, Zou Z Q, Guo Y F 2020 Sci. Rep. 10 15345Google Scholar

    [116]

    Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [117]

    Zhang D Q, Shi M J, Zhu T S, Xing D Y, Zhang H J, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [118]

    Ge J, Liu Y Z, Li J H, Li H, Luo T C, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar

    [119]

    Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [120]

    Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443Google Scholar

    [121]

    Hu C W, Ding L, Gordon K N, Ghosh B, Tien H J, Li H X, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J Y, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D S, Xu S Y, Lin H, Cao H B, Chang T R, Dessau D, Ni N 2020 Sci. Adv. 6 eaba4275Google Scholar

    [122]

    Jiang Z, Wang P, Xing J P, Jiang X, Zhao J J 2018 ACS Appl. Mater. Interfaces 10 39032Google Scholar

    [123]

    Zhang T L, Wang Y M, Li H X, Zhong F, Shi J, Wu M H, Sun Z Y, Shen W F, Wei B, Hu W D, Liu X F, Huang L, Hu C G, Wang Z C, Jiang C B, Yang S X, Zhang Q M, Qu Z 2019 ACS Nano 13 11353Google Scholar

    [124]

    Yan S N, Wang P F, Wang C Y, Xu T, Li Z, Cao T J, Chen M Y, Pan C, Cheng B, Sun L T, Liang S J, Miao F 2019 Sci. China Inform. Sci. 62 220407Google Scholar

    [125]

    Qing X M, Li H, Zhong C G, Zhou P X, Dong Z C, Liu J M 2020 Phys. Chem. Chem. Phys. 22 17255Google Scholar

    [126]

    Ferrenti A M, Klemenz S, Lei S M, Song X Y, Ganter P, Lotsch B V, Schoop L M 2020 Inorg. Chem. 59 1176Google Scholar

    [127]

    Li W, Yang Z Y, Hou Y L, Gao S 2020 Prog. Chem. 32 1437Google Scholar

    [128]

    Lu H Y, Wang W, Liu Y, Chen L M, Xie Q Y, Yin H D, Cheng G F, He L 2020 Appl. Surf. Sci. 504 144405Google Scholar

    [129]

    Yu J X, Li J, Zhang W F, Chang H X 2015 Chem. Sci. 6 6705Google Scholar

    [130]

    Li J, Zhao B, Chen P, Wu R, Li B, Xia Q, Guo G, Luo J, Zang K, Zhang Z, Ma H, Sun G, Duan X, Duan X F 2018 Adv. Mater. 30 e1801043Google Scholar

    [131]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [132]

    Yuan J T, Balk A, Guo H, Fang Q Y, Patel S, Zhao X H, Terlier T, Natelson D, Crooker S, Lou J 2019 Nano Lett. 19 3777Google Scholar

    [133]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Wang X R S, Liu Z 2020 Nat. Commun. 11 3729Google Scholar

    [134]

    Yang P F, Zou X L, Zhang Z P, Hong M, Shi J P, Chen S L, Shu J P, Zhao L Y, Jiang S L, Zhou X B, Huan Y H, Xie C Y, Gao P, Chen Q, Zhang Q, Liu Z F, Zhang Y F 2018 Nat. Commun. 9 979Google Scholar

    [135]

    Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar

    [136]

    Dangol R, Dai Z F, Chaturvedi A, Zheng Y, Zhang Y, Dinh K N, Li B, Zong Y, Yan Q Y 2018 Nanoscale 10 4890Google Scholar

    [137]

    Liu L, Yao T, Tan X G, Liu Q H, Wang Z Q, Shen D C, Sun Z H, Wei S Q, Xie Y 2012 Small 8 3752Google Scholar

    [138]

    Feng J, Sun X, Wu C Z, Peng L L, Lin C W, Hu S L, Yang J L, Xie Y 2011 J. Am. Chem. Soc. 133 17832Google Scholar

    [139]

    Yang H, Wang F, Zhang H S, Guo L H, Hu L Y, Wang L F, Xue D J, Xu X H 2020 J. Am. Chem. Soc. 142 4438Google Scholar

    [140]

    Yang Z Y, Zhang H H, Xu J J, Ma R Z, Sasaki T, Zeng Y J, Ruan S C, Hou Y L 2020 Natl. Sci. Rev. 7 841Google Scholar

    [141]

    De Siena M C, Creutz S E, Regan A, Malinowski P, Jiang Q N, Kluherz K T, Zhu G M, Lin Z, De Yoreo J J, Xu X D, Chu J H, Gamelin D R 2020 Nano Lett. 20 2100Google Scholar

    [142]

    Liu S S, Yuan X, Zhou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 Npj 2D Mater. Appl. 1 1Google Scholar

    [143]

    Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J O, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L, Gao H J 2018 Sci. Bull. 63 419Google Scholar

    [144]

    Liu Z L, Lei B, Zhu Z L, Tao L, Qi J, Bao D L, Wu X, Huang L, Zhang Y Y, Lin X, Wang Y L, Du S X, Pantelides S T, Gao H J 2019 Nano Lett. 19 4897Google Scholar

    [145]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 089901Google Scholar

    [146]

    Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130Google Scholar

    [147]

    Kimura A, Matsuno J, Okabayashi J, Fujimori A, Shishidou T, Kulatov E, Kanomata T 2001 Phys. Rev. B 63 224420Google Scholar

    [148]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [149]

    Pathak S, Sharma M 2014 J. Appl. Phys. 115 043906Google Scholar

    [150]

    Zhang G P, Hubner W, Lefkidis G, Bai Y H, George T F 2009 Nat. Phys. 5 499Google Scholar

    [151]

    Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sci. 7 2001722Google Scholar

    [152]

    Liu B, Liu S S, Yang L, Chen Z D, Zhang E Z, Li Z H, Wu J, Ruan X Z, Xiu F X, Liu W Q, He L, Zhang R, Xu Y B 2020 Phys. Rev. Lett. 125 267205Google Scholar

    [153]

    Cai L, Yu C L, Liu L Y, Xia W, Zhou H A, Zhao L, Dong Y Q, Xu T, Wang Z D, Guo Y F, Zhao Y G, Zhang J S, Yang L Y, Yang L X, Jiang W J 2020 Appl. Phys. Lett. 117 192401Google Scholar

    [154]

    Gibson G A, Schultz S 1993 J. Appl. Phys. 73 4516Google Scholar

    [155]

    Niu B, Su T, Francisco B A, Ghosh S, Kargar F, Huang X, Lohmann M, Li J X, Xu Y D, Taniguchi T, Watanabe K, Wu D, Balandin A, Shi J, Cui Y T 2020 Nano Lett. 20 553Google Scholar

    [156]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [157]

    Zhou X H, Brzostowski B, Durajski A P, Liu M Z, Xiang J, Jiang T R, Wang Z Q, Chen S W, Li P G, Zhong Z H, Drzewinski A, Jarosik M W, Szczesniak R, Lai T S, Guo D H, Zhong D Y 2020 J. Phys. Chem. C 124 9416Google Scholar

    [158]

    Tian Y, Gray M J, Ji H W, Cava R J, Burch K S 2016 2 D Mater. 3 025035Google Scholar

    [159]

    Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187Google Scholar

    [160]

    Heron J T, Trassin M, Ashraf K, Gajek M, He Q, Yang S Y, Nikonov D E, Chu Y H, Salahuddin S, Ramesh R 2011 Phys. Rev. Lett. 107 217202Google Scholar

    [161]

    Cao T, Li Z L, Louie S G 2015 Phys. Rev. Lett. 114 236602Google Scholar

    [162]

    Li X X, Yang J L 2014 J. Mater. Chem. C 2 7071Google Scholar

    [163]

    Pan H 2014 Sci. Rep. 4 7524Google Scholar

    [164]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [165]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [166]

    Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [167]

    Zhang W, Zhang L, Wong P K J, Yuan J R, Vinai G, Torelli P, van der Laan G, Feng Y P, Wee A T S 2019 ACS Nano 13 8997Google Scholar

    [168]

    Zhang L M,Huang X Y, Dai H W, Wang M S, Cheng H, Tong L, Li Z, Han X T, Wang X, Ye L, Han J B 2020 Adv. Mater. 32 2002032Google Scholar

    [169]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [170]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [171]

    Jiang T, Liu H R, Huang D, Zhang S, Li Y G, Gong X G, Shen Y R, Liu W T, Wu S W 2014 Nat. Nanotechnol. 9 825Google Scholar

    [172]

    Alegria L D, Ji H, Yao N, Clarke J J, Cava R J, Petta J R 2014 Appl. Phys. Lett. 105 053512Google Scholar

    [173]

    Zhong D, Seyler K L, Linpeng X Y, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C, Xu X D 2017 Sci. Adv. 3 e1603113Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [3] 樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏. 二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质. 物理学报, 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [4] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [5] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [6] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [7] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [8] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [9] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展. 物理学报, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [10] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [11] 肖寒, 弭孟娟, 王以林. 二维磁性材料及多场调控研究进展. 物理学报, 2021, 70(12): 127503. doi: 10.7498/aps.70.20202204
    [12] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [13] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [14] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [15] 许宏, 苑争一, 黄彤飞, 王啸, 陈正先, 韦进, 张翔, 黄元. 层状材料褶皱对几种地质活动机理研究的启示. 物理学报, 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [16] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [17] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [18] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用. 物理学报, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [19] 张新伟, 华正和, 蒋毓文, 杨绍光. 溶胶凝胶自燃烧法合成金属与合金材料研究进展. 物理学报, 2015, 64(9): 098101. doi: 10.7498/aps.64.098101
    [20] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
计量
  • 文章访问数:  20724
  • PDF下载量:  1936
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 修回日期:  2021-01-28
  • 上网日期:  2021-06-18
  • 刊出日期:  2021-06-20

/

返回文章
返回