-
Both high-efficient thermoelectric materials and thermal insulating coatings requiring low thermal conductivities, layered materials and superlattices prove to be an efficient multiscale material design for such requirements. The interfaces are artificially introduced to scatter thermal phonons, thus hindering thermal transport. Very recently, it has been found that interface modulation can further reduce the thermal conductivity. All of the recent advances originate from highly demanding numerical computations. An efficient estimate of the thermal properties is important for fast and/or high-throughput calculations. In this article, the phonon transport on layered material is studied theoretically for general purposes, based on the fact that long-wavelength phonons contribute dominantly in general. According to the Debye hypothesis, the classical wave equation can describe phonon transport very well. This fact has been very recently used to model phonon transport carbon nanotubes, which justifies the applicability of continuum mechanics for nanomaterials. Furthermore, Kronig and Penny have solved the electron transport on periodic lattices. In a very similar way, for the periodic layered materials and superlattices, with Floquet and linear attenuation theory, the wave equations with and without damping are solved analytically. The wave equation decouples to Helmholtz equations in each direction with periodic excitation functions. In this paper, we propose to model the phonon transport by using Matthew-Hill equation, with which we can obtain the phonon spectrum (i.e. phonon dispersion relation). The proposed theory is justified by two-dimensional (2D) graphene/hexagon boron nitride superlattice and three-dimensional (3D) silicon/germanium superlattices. Like the carbon nanotube cases, using this continuum-mechanics method, we can reproduce the previous numerical results very quickly compared with using published molecular dynamics and density functional theory The effects of interface modulation and phonon localization are shown over full phase space, which further enables the calculating of both high and low bounds of thermal conductivity for all possible superlattices and layered materials. In order to model real interfaces, with considering possible mixing and transition due to other mechanisms, we use the smooth transition function, which is further modeled via sinusoidal series. Very interestingly, interface grading is shown to erase band gaps and delocalize modes. This fact has been seldom reported and can be helpful for designing real materials. Likewise, we take phonon damping (equivalent to inter-phonon scattering) into account by adding damping into the wave equation. It is observed that phonon damping smears the originally sharp boundaries of phonon phase space. In this way, evanescent phonons and transporting phonons can be treated simultaneously on the same footing. The proposed method can be used for modeling the efficient and general thermal materials
-
Keywords:
- superlattices /
- layered materials /
- thermal conductivity /
- continuum model
[1] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
[2] Heremans J P, Dresselhaus M S, Bell L E, Morelli D T 2013 Nat. Nanotechnol. 8 471
[3] Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436
[4] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[5] Nolas G S, Sharp J, Goldsmid H J 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer) pp12-23
[6] Tsu R 2011 Superlattice to Nanoelectronics (Boston: Elsevier) pp1-7
[7] Chen G 1997 J. Heat Trans. 119 220
[8] Chen G 1999 J. Heat Trans. 121 945
[9] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727
[10] Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230
[11] Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209
[12] Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347
[13] Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441
[14] Lindsay L, Broido D A 2011 Phys. Rev. B 84 155421
[15] Zhu T, Ye W 2010 Phys. Rev. E 82 036308
[16] Zhu T, Ye W 2011 Phys. Rev. E 84 056316
[17] Zhu T, Ye W 2010 Num. Heat Trans. B 57 203
[18] Zhu T, Ye W 2012 J. Heat Trans. 134 051013
[19] Guo Z, Xu K 2016 arXiv:1602.01680v1
[20] Liu H, Xu K, Zhu T, Ye W 2012 Comput. Fluids 67 115
[21] Munoz E, Lu H, Yakobson B I 2010 Nano Lett. 10 1652
[22] Hill G W 1886 Acta Math. 8 1
[23] van der Pol B, Strutt M J O 1928 Phil. Mag. 5 18
[24] McLachlan N W 1964 Theory and Applications of Mathieu Functions (New York: Dover) pp11-23
[25] Magnus W, Winkler S 1966 Hill's Equation (New York: Interscience) pp7-13
[26] Lyngby P P 1980 Ingenieur-Archiv. 49 15
[27] Kwong M K, Wong J S W 2006 J. Math. Anal. Appl. 320 37
[28] Ruby L 1996 Am. J. Phys. 64 39
[29] Gutierrez-Vega J C 2003 Am. J. Phys. 71 233
[30] Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) pp180-182
[31] Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927
[32] Zhu T, Ertekin E 2016 arXiv:1602.02419
[33] Savic I, Donadio D, Gygi F, Galli G 2013 Appl. Phys. Lett. 102 073113
[34] Chalopin Y, Esfarjani K, Henry A, Volz S, Chen G 2012 Phys. Rev. B 85 195302
[35] Zhu T, Ertekin E 2015 Phys. Rev. B 91 205429
[36] Taylor J H, Narendra K S 1969 SIAM J. Appl. Math. 17 343
-
[1] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
[2] Heremans J P, Dresselhaus M S, Bell L E, Morelli D T 2013 Nat. Nanotechnol. 8 471
[3] Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436
[4] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[5] Nolas G S, Sharp J, Goldsmid H J 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer) pp12-23
[6] Tsu R 2011 Superlattice to Nanoelectronics (Boston: Elsevier) pp1-7
[7] Chen G 1997 J. Heat Trans. 119 220
[8] Chen G 1999 J. Heat Trans. 121 945
[9] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727
[10] Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230
[11] Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209
[12] Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347
[13] Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441
[14] Lindsay L, Broido D A 2011 Phys. Rev. B 84 155421
[15] Zhu T, Ye W 2010 Phys. Rev. E 82 036308
[16] Zhu T, Ye W 2011 Phys. Rev. E 84 056316
[17] Zhu T, Ye W 2010 Num. Heat Trans. B 57 203
[18] Zhu T, Ye W 2012 J. Heat Trans. 134 051013
[19] Guo Z, Xu K 2016 arXiv:1602.01680v1
[20] Liu H, Xu K, Zhu T, Ye W 2012 Comput. Fluids 67 115
[21] Munoz E, Lu H, Yakobson B I 2010 Nano Lett. 10 1652
[22] Hill G W 1886 Acta Math. 8 1
[23] van der Pol B, Strutt M J O 1928 Phil. Mag. 5 18
[24] McLachlan N W 1964 Theory and Applications of Mathieu Functions (New York: Dover) pp11-23
[25] Magnus W, Winkler S 1966 Hill's Equation (New York: Interscience) pp7-13
[26] Lyngby P P 1980 Ingenieur-Archiv. 49 15
[27] Kwong M K, Wong J S W 2006 J. Math. Anal. Appl. 320 37
[28] Ruby L 1996 Am. J. Phys. 64 39
[29] Gutierrez-Vega J C 2003 Am. J. Phys. 71 233
[30] Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) pp180-182
[31] Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927
[32] Zhu T, Ertekin E 2016 arXiv:1602.02419
[33] Savic I, Donadio D, Gygi F, Galli G 2013 Appl. Phys. Lett. 102 073113
[34] Chalopin Y, Esfarjani K, Henry A, Volz S, Chen G 2012 Phys. Rev. B 85 195302
[35] Zhu T, Ertekin E 2015 Phys. Rev. B 91 205429
[36] Taylor J H, Narendra K S 1969 SIAM J. Appl. Math. 17 343
计量
- 文章访问数: 6884
- PDF下载量: 1249
- 被引次数: 0