搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料

郑建军 张丽萍

引用本文:
Citation:

单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料

郑建军, 张丽萍

Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity

Zheng Jian-Jun, Zhang Li-Ping
PDF
导出引用
  • 具有低晶格热导率和高热电优值的二维(2D)材料可用于热电器件的制备。本文通过第一性原理和玻尔兹曼输运理论,系统地预测了单层Cu2X (X=S,Se)的热电性质。研究发现单层Cu2Se较Cu2S在室温下具有更低的晶格热导率(1.93W/mK和3.25W/mK),这源于其更低的德拜温度和更强的非谐性。单层Cu2X (X=S,Se)价带顶处的能带简并效应显著增大了其载流子有效质量,导致p型掺杂下具有高的塞贝克系数和低的电导率。在最优掺杂浓度下,单层Cu2S (Cu2Se) n型的功率因数16.5mW/mK2(25.9mW/mK2)远高于其p型的功率因数1.1mW/mK2(6.6mW/mK2),且随着温度的提升这一优势将更加明显。温度为700K时,单层Cu2S和Cu2Se在n型最优掺杂浓度下的热电优值可以达到1.85和2.82,高于p型最优掺杂浓度下的热电优值0.38和1.7。单层Cu2X (X=S,Se)的优良热电性能可与近期报道的许多先进的热电材料相媲美,特别是单层Cu2Se的热电优值高于众所周知的先进热电材料-单层SnSe (2.32)。因此,单层Cu2X (X=S,Se)是一类具有优异性能和良好应用前景的潜在热电材料。这些结果为后续探索2D热电材料的实验及应用提供了理论依据,并为深入了解声子热输运对热电优值的影响提供了新的见解。
    Two-dimensional (2D) materials with lower lattice thermal conductivity and high figure of merit are useful for applications in thermoelectric (TE) devices.In this work,the thermoelectric properties of monolayer Cu2X (X=S,Se) have been systematically researched through first-principles and Boltzmann transport theory.We have verified the dynamic stability of monolayer Cu2X (X=S,Se) through elastic constants and phonon dispersion.The results show that monolayer Cu2X (X=S,Se) together with small lattice constants,resulting in lower phonon vibration modes.Phonon transport calculations confirm that monolayer Cu2Se has lower lattice thermal conductivity (1.93W/mK) than Cu2S (3.25W/mK) at room temperature,which is due to its small Debye temperature and stronger anharmonicity.Moreover,the heavier atomic mass of Se atoms effectively reduces the phonon frequency,resulting in a ultra narrow phonon band gap (0.08THz) and lower lattice thermal conductivity for monolayer Cu2Se.The band degeneracy effect at the VBM of monolayer Cu2X (X=S,Se) significantly increases its carrier effective mass,resulting in higher Seebeck coefficient and lower conductivity under p-type doping.The electric transport calculation at room temperature shows that the conductivity of monolayer Cu2S (Cu2Se) under n-type doping about 1011cm-2 is 2.8×104S/m (4.5×104S/m),obviously superior to their conductivity about 2.6×102S/m (1.6×103S/m) under p-type doping.At the optimum doping concentration for monolayer Cu2S (Cu2Se),the n-type power factor is 16.5mW/mK2(25.9mW/mK2),which is far higher than p-type doping 1.1mW/mK2(6.6mW/mK2).Through the above results,the excellent figure of merit of monolayer Cu2S and Cu2Se under optimal n-type doping at 700 K can approach 1.85 and 2.82,which are higher than 0.38 and 1.7 under optimal p-type doping.The excellent thermoelectric properties of monolayer Cu2S and Cu2Se are comparable to those of many promising thermoelectric materials reported recently.Especially,the figure of merit of monolayer Cu2Se is larger than the well-known high-efficient thermoelectric monolayer SnSe (2.32).Therefore,monolayer Cu2X (X=S,Se) are potential thermoelectric material with excellent performance and good application prospects.Such results provide theoretical basis for the follow-up experiments exploring the practical applications of 2D thermoelectric semi-conductors materials and offer an in-depth insight into the effect of phonon thermal transport on improvement of TE transport properties.
  • [1]

    Yang J, Stabler F R 2009 J. Electron. Mater. 381245

    [2]

    Sootsman J, Chung D Y, Kanatzidis M 2009 Angew. Chem. 488616

    [3]

    Rowe D M 1986 Appl. Energy 24139

    [4]

    Sales B 2002 Science 2951248

    [5]

    Zhang X, Zhao L D 2015 J. Materiomics 192

    [6]

    Naghavi S S, He J, Xia Y, Wolverton C 2018 Chem. Mater. 305639

    [7]

    Sajjad M, Singh N, Sattar S, Wolf S D, Schwingenschlögl U 2019 ACS Appl. Energy Mater. 23004

    [8]

    Huang H H, Xing G, Fan X, Singh D J, Zheng W T 2019 J. Mater. Chem. C 75094

    [9]

    Wang Y, Gao Z, Zhou J 2019 E Low dimens. Syst. Nanostruct. 10853

    [10]

    Xu B, Xia Q, Zhang J, Ma S, Wang Y, Xu Q, Li J, Wang Y 2020 Comput. Mater. Sci. 177109588

    [11]

    Shafique A, Samad A, Shin Y H 2017 Phys. Chem. Chem. Phys. 1920677

    [12]

    Liu X, Zhang D, Wang H, Chen Y, Wang H, Ni Y 2021 Phys. Chem. Chem. Phys. 2324039

    [13]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321554

    [14]

    Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27095501

    [15]

    Pei Y, Wang H, Snyder G J. 2012 Adv. Mater. 246125

    [16]

    Reshak A H, Khan S A 2014 J. Magn. Magn. Mater. 354216

    [17]

    Pei Y Z, Shi X Y, Lalonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473

    [18]

    Yu J, Li T, Nie G, Zhang B P, Sun Q 2019 Nanoscale 1110306

    [19]

    Liu W, Shi X, Hong M, Yang L, Moshwan R, Chen Z G, Zou J 2018 J. Mater. Chem. C 613225

    [20]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 615

    [21]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267108033

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 591758

    [23]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 1248207

    [24]

    Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231140

    [25]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 781341

    [26]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 1851747

    [27]

    Li W, Mingo N, Lindsay L, Broido D A, Stewart D A, Katcho N A 2012 Phys. Rev. B 85195436

    [28]

    Chen X, Wang D, Liu X, Li L, Sanyal B 2020 J. Phys. Chem. Lett. 112925

    [29]

    Born M, Huang K 1955 Am. J. Phys. 23474

    [30]

    Zhang F, Zhu B, Guo H, Qiu J, Zheng K, Chen X, Yu J 2021 Appl. Surf. Sci. 550149230

    [31]

    Gao Z, Tao F, Ren J 2018 Nanoscale 1012997

    [32]

    Zhu X L, Zhang J R, Zhou P, Xie W X, Wang G F, Tian B 2019 Nanoscale 1119923

    [33]

    Guo S D, Wang Y H 2017 J. Appl. Phys. 121034302

    [34]

    Peng B, Zhang H, Shao H, Xu Y, Ni G, Zhang R, Zhu H 2016 Phys. Rev. B 94245420

    [35]

    Zhang W, Zhang X Q, Liu L, Wang Z, Li Z G 2021 Chin. Phys. B 30526

    [36]

    Ziman J M 1963 International Series of Monographs on Physics (Oxford: Clarendon) p168

    [37]

    Carrete J, Li W, Lindsay L, Broido D A, Gallego L J, Mingo N 2016 Mater. Res. Lett. 4204

    [38]

    Slack G A 1973 J. Phys. Chem. Solids 34321

    [39]

    Broido D A, Ward A, Mingo N 2005 Phys. Rev. B 72014308

    [40]

    Lv B, Hu X, Liu X, Zhang Z, Song J, Luo Z 2020 Phys. Chem. Chem. Phys. 2217833

    [41]

    Morelli D T, Heremans J P 2002 Appl. Phys. Lett. 815126

    [42]

    Bolen E, Deligoz E, Ozisik H 2021 Solid State Commun. 327114223

    [43]

    Mohanta M K, Sarkar A D 2020 ACS Appl. Mater. 1218123

    [44]

    Peng B, Zhang H, Shao H, Xu K, Ni G, Li J, Zhu H, Soukoulis C M 2018 J. Mater. Chem. A 62018

    [45]

    Qiu P, Agne M T, Liu Y, Zhu Y, Chen H, Mao T,Yang J, Zhang W, Haile S M, Zeier W G, Janek J, Uher C,Shi X, Chen L, Snyder G J 2018 Nature Communications 92910

    [46]

    Brown D R, Day T, Caillat T, Snyder G J 2013 Journal of Electronic Materials 422014

    [47]

    Miyatani S Y, Suzuki Y 1953 Journal of the Physical Society of Japan 8680

    [48]

    Maassen J, Lundstrom M 2013 Appl. Phys. Lett. 102093103

    [49]

    Sun Z H, Yuan K P, Chang Z, Bi S P, Zhang X L, Tang D W 2020 Nanoscale123330

  • [1] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, doi: 10.7498/aps.73.20240432
    [2] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能. 物理学报, doi: 10.7498/aps.72.20222301
    [3] 郑建军, 张丽萍. 单层Cu2X的热电性质. 物理学报, doi: 10.7498/aps.72.20222015
    [4] 杨亮亮, 秦源浩, 魏江涛, 宋培帅, 张明亮, 杨富华, 王晓东. 硒化亚铜薄膜热电性能研究进展. 物理学报, doi: 10.7498/aps.70.20201677
    [5] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.156301
    [6] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, doi: 10.7498/aps.65.157201
    [7] 邵栋元, 惠群, 李孝, 陈晶晶, 李春梅, 程南璞. Ca0.5Sr0.5TiO3弹性和热学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.207102
    [8] 刘冉, 高琳洁, 李龙江, 翟胜军, 王江龙, 傅广生, 王淑芳. Ca2+掺杂对CdO多晶热电性能的影响. 物理学报, doi: 10.7498/aps.64.218101
    [9] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, doi: 10.7498/aps.63.197102
    [10] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.62.167201
    [11] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, doi: 10.7498/aps.62.124401
    [12] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, doi: 10.7498/aps.61.017103
    [13] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047104
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, doi: 10.7498/aps.60.037102
    [15] 孙伟峰, 李美成, 赵连城. 窄带隙超晶格中载流子俄歇寿命和碰撞电离率的第一性原理研究. 物理学报, doi: 10.7498/aps.59.5661
    [16] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4156
    [17] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.58.7136
    [18] 何国荣, 郑婉华, 渠红伟, 杨国华, 王 青, 曹玉莲, 陈良惠. 键合界面对面发射激光器光与热性质的影响. 物理学报, doi: 10.7498/aps.57.1840
    [19] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, doi: 10.7498/aps.57.1123
    [20] 杨宏顺, 李鹏程, 柴一晟, 余旻, 李志权, 杨东升, 章良, 王喻宏, 李明德, 曹烈兆, 龙云泽, 陈兆甲. La2CuO4掺锌样品的低温电阻率与热导率研究. 物理学报, doi: 10.7498/aps.51.679
计量
  • 文章访问数:  2342
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 上网日期:  2023-02-23

/

返回文章
返回