搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硒化亚铜薄膜热电性能研究进展

杨亮亮 秦源浩 魏江涛 宋培帅 张明亮 杨富华 王晓东

引用本文:
Citation:

硒化亚铜薄膜热电性能研究进展

杨亮亮, 秦源浩, 魏江涛, 宋培帅, 张明亮, 杨富华, 王晓东

Research progress of Cu2Se thin film thermoelectric properties

Yang Liang-Liang, Qin Yuan-Hao, Wei Jiang-Tao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong
PDF
HTML
导出引用
  • 热电材料可以实现热能和电能的相互转换, 它是一种环境友好的功能性材料. 当前, 热电材料的热电转换效率低, 这严重制约了热电器件的大规模应用, 因此寻找更加优异热电性能的新材料或提高传统热电材料的热电性能成为热电研究的主题. 与块状材料相比, 薄膜具有二维的宏观性质和一维的纳米结构特性, 方便研究材料的物理机制与性能的关系, 还适用于制备可穿戴电子设备. 本文总结了Cu2Se薄膜5种不同的制备方法, 包括电化学沉积、热蒸发、旋涂、溅射以及脉冲激光沉积. 另外, 结合典型事例, 总结了薄膜的表征手段, 并从Cu2Se的电导率、塞贝克系数和热导率等参数出发, 讨论了各个参数对热电性能的影响机制. 最后介绍了Cu2Se薄膜热电的热门应用方向.
    Thermoelectric (TE) materials can directly realize the mutual conversion between heat and electricity, and it is an environmentally friendly functional material. At present, the thermoelectric conversion efficiencies of thermoelectric materials are low, which seriously restricts the large-scale application of thermoelectric devices. Therefore, finding new materials with better thermoelectric properties or improving the thermoelectric properties of traditional thermoelectric materials has become the subject of thermoelectric research. Thin film materials, compared with bulk materials, possess both the two-dimensional macroscopic properties and one-dimensional nanostructure characteristics, which makes it much easier to study the relationships between physical mechanisms and properties. Besides, thin film are also suitable for the preparation of wearable electronic devices. This article summarizes five different preparation methods of Cu2Se thin films, i.e. electrochemical deposition, thermal evaporation, spin coating, sputtering, and pulsed laser deposition. In addition, combing with typical examples, the characterization methods of the film are summarized, and the influence mechanism of each parameter on the thermoelectric performance from electrical conductivity, Seebeck coefficient and thermal conductivity is discussed. Finally, the hot application direction of Cu2Se thin film thermoelectrics is also introduced.
      通信作者: 王晓东, xdwang@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB1503602, 2018YFB1107502)、中国科学院先导B项目(批准号: XDB43020500)和中国科学院科研仪器设备研制项目(批准号: GJJSTD20200006)资助的课题
      Corresponding author: Wang Xiao-Dong, xdwang@semi.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFB1503602, 2018YFB1107502), the Pilot B Program of the Chinese Academy of Sciences, China (Grant No. XDB43020500) and Development Program of Scientific Research Instruments and Equipment of the Chinese Academy of Sciences, China (Grant No. GJJSTD20200006)
    [1]

    Lu P, Liu H, Yuan X, Xu F, Shi X, Zhao K, Qiu W, Zhang W, Chen L 2015 J. Mater. Chem. A 3 6901Google Scholar

    [2]

    Hussain R A, Hussain I 2020 Solid State Sci. 100 106101Google Scholar

    [3]

    Malekar V P, Gangawane S A, Fulari V J 2020 Mater. Today Proc. 23 202Google Scholar

    [4]

    Sharma K, Sharma D K, Kumar V 2020 Optik 206 164376Google Scholar

    [5]

    Li Y, Fan P, Zheng Z, Luo J, Liang G, Guo S 2016 J. Alloy. Compd. 658 880Google Scholar

    [6]

    Wei J J, Yang L L, Ma Z, Song P S, Zhang M L, Ma J, Yang F H, Wang X D 2020 J. Mater. Sci. 55 12642Google Scholar

    [7]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [8]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229Google Scholar

    [9]

    Pammi S V N, Jella V, Choi J S, Yoon S G 2017 J. Mater. Chem. C 5 763Google Scholar

    [10]

    Lv Y, Chen J, Zheng R K, Shi X, Song J, Zhang T, Li X, Chen L 2015 Ceram. Int. 41 7439Google Scholar

    [11]

    Ma Z, Liu Y, Deng L, Zhang M, Zhang S, Ma J, Song P, Liu Q, Ji A, Yang F, Wang X 2018 Nanomaterials 8 77Google Scholar

    [12]

    Chen X, Dai W, Wu T, Luo W, Yang J, Jiang W, Wang L 2018 Coatings 8 244Google Scholar

    [13]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B Condens Matter 47 12727Google Scholar

    [14]

    Dresselhaus M S, Dresselhaus G, Sun X, Zhang Z, Cronin S B, Koga T 1999 Phys. Solid State 41 679Google Scholar

    [15]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B J N 2001 Nature 413 597Google Scholar

    [16]

    Zhou Y, Matsubara I, Shin W, Izu N, Murayama N 2004 J. Appl. Phys. 95 625Google Scholar

    [17]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [18]

    Zheng X J, Zhu L, Zhou Y H, Zhang Q 2005 Appl. Phys. Lett. 87 2229

    [19]

    Mehdizadeh D A, Zebarjadi M, He J, Tritt T M 2015 Mater. Sci. Eng. R 97 1Google Scholar

    [20]

    Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger S C, Stöger P M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q, Bauer E 2019 Nature 576 85Google Scholar

    [21]

    Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y 2019 Adv. Mater. 31 1801072Google Scholar

    [22]

    Zhao W Y, Zhang Q J, Sun Z G, Zhu W T, Wei P, Fang W B, Tian Y, Nie X L, Li P 2019 J. Inorg. Mater. 34 6

    [23]

    Gahtori B, Bathula S, Tyagi K, Jayasimhadri M, Srivastava A K, Singh S, Budhani R C, Dhar A 2015 Nano Energy 13 36Google Scholar

    [24]

    Zhao K, Liu K, Yue Z, Wang Y, Song Q, Li J, Guan M, Xu Q, Qiu P, Zhu H, Chen L, Shi X 2019 Adv. Mater. 190 3480

    [25]

    Byeon D, Sobota R, Delime Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, Takeuchi T 2019 Nat. Commun. 10 72Google Scholar

    [26]

    Byeon D, Sobota R, Singh S, Ghodke S, Choi S, Kubo N, Adachi M, Yamamoto Y, Matsunami M, Takeuchi T 2020 J. Electron. Mater. 49 2855Google Scholar

    [27]

    Chen H Y, Shi X, Chen L D, Chou P F 2019 J. Inorg. Mater. 34 1041

    [28]

    Kim J H, Oh S, Sohn W H, Rhyee J S, Park S D, Kang H, Ahn D 2015 Acta Mater. 100 32Google Scholar

    [29]

    Tak J Y, Nam W H, Lee C, Kim S, Lim Y S, Ko K, Lee S, Seo W S, Cho H K, Shim J H, Park C H 2018 Chem. Mat. 30 3276Google Scholar

    [30]

    Liu W, Shi X, Hong M, Yang L, Moshwan R, Chen Z G, Zou J 2018 J. Mater. Chem. C 6 13225

    [31]

    Sun Y, Xi L, Yang J, Wu L, Shi X, Chen L, Snyder J, Yang J, Zhang W 2017 J. Mater. Chem. A 5 5098Google Scholar

    [32]

    Olvera A A, Moroz N A, Sahoo P, Ren P, Bailey T P, Page A A, Uher C, Poudeu P F P 2017 Energy & Environ. Sci. 10 1668

    [33]

    R. D. Heyding 1966 Can. J. Chem. 44 1233Google Scholar

    [34]

    Namsani S, Auluck S, Singh J K 2017 Appl. Phys. Lett. 111 163903Google Scholar

    [35]

    Eikeland E, Blichfeld A B, Borup K A, Zhao K, Overgaard J, Shi X, Chen L, Iversen B B 2017 Iucrj 4 476Google Scholar

    [36]

    Bailey T P, Hui S, Xie H, Olvera A, Poudeu P F P, Tang X, Uher C 2016 J. Mater. Chem. A 4 17225Google Scholar

    [37]

    Yang L, Chen Z G, Han G, Hong M, Zou Y, Zou J 2015 Nano Energy 16 367Google Scholar

    [38]

    Kim H, Ballikaya S, Chi H, Ahn J P, Ahn K, Uher C, Kaviany M 2015 Acta Mater. 86 247Google Scholar

    [39]

    Ballikaya S, Chi H, Salvador J R, Uher C 2013 J. Mater. Chem. A 1 12478Google Scholar

    [40]

    Lin Z, Hollar C, Kang J S, Yin A, Wang Y, Shiu H Y, Huang Y, Hu Y, Zhang Y, Duan X 2017 Adv. Mater. 29 1606662Google Scholar

    [41]

    Ghosh A, Kulsi C, Banerjee D, Mondal A 2016 Appl. Surf. Sci. 369 525Google Scholar

    [42]

    Liu T C, Hu Y, Chang W B 2014 Mater. Sci. Eng. B 180 33Google Scholar

    [43]

    Rajesh D, Chandrakanth R R, Sunandana 2013 J. Apple. Phys. 4 65

    [44]

    Mansour B A, Zawawi I K E L, Elsayed A H E, Hameed T A 2018 J. Alloy. Comp. 740 1125Google Scholar

    [45]

    Emslie A G, Bonner F T, Peck L G 1958 J. Appl. Phys. 29 858Google Scholar

    [46]

    王东, 刘红缨, 贺军辉, 刘林林 2012 影像科学与光化学 30 91Google Scholar

    Wang D, Liu H Y, He J H, Liu L L, 2012 Imaging Sci. Photochem. 30 91Google Scholar

    [47]

    Mitzi D B, Kosbar L L, Murray C E, Copel M, Afzali A 2004 Nature 428 299Google Scholar

    [48]

    Mitzi D B, Copel M, Murray C E 2006 Adv. Mater. 18 2448Google Scholar

    [49]

    Sheng J, Han K L, Hong T, Choi W H, Park J S 2018 J. Semicond. 39 011008Google Scholar

    [50]

    Mihi A, Ocana M, Miguez H 2006 Adv. Mater. 18 2244Google Scholar

    [51]

    Zhang T, Yao G, Pan T, Lu Q 2020 J. Semicond. 41 041602Google Scholar

    [52]

    Lee H, Lee B P, Messersmith P B 2007 Nature 448 338Google Scholar

    [53]

    Lee J H, Oh J Y, Kim D M 1999 J. Mater. Sci.-Mater. Med. 10 629Google Scholar

    [54]

    Scimeca M R, Yang F, Zaia E, Chen N, Zhao P, Gordon M P, Forster J D, Liu Y S, Guo J, Urban J J, Sahu A 2019 ACS Appl. Energy Mater. 2 1517Google Scholar

    [55]

    Day T W, Weldert K S, Zeier W G, Chen B R, Moffitt S L, Weis U, Jochum K P, Panthoefer M, Bedzyk M J, Snyder G J, Tremel W 2015 Chem. Mater. 27 7018Google Scholar

    [56]

    Zeng Y, Liang G, Fan P, Xie Y, Fan B, Hu J, Zheng Z, Zhang X, Luo J, Zhang D 2017 J. Mater. Sci.-Mater. Electron. 28 13763Google Scholar

    [57]

    Shen S, Zhu W, Deng Y, Zhao H, Peng Y, Wang C 2017 Appl. Surf. Sci. 414 197Google Scholar

    [58]

    Kim H J, Kim K C, Choi W C, Kim J S, Kim Y H, Kim S I, Park C 2012 J. Nanosci. Nanotechnol. 12 3629Google Scholar

    [59]

    Yuan D, Zhi Wei Z 2015 J. Inorg. Mater. 30 1Google Scholar

    [60]

    Perez Taborda J A, Vera L, Caballero Calero O, Lopez E O, Romero J J, Stroppa D G, Briones F, Martin Gonzalez M 2017 Adv. Mater. Technol. 2 7

    [61]

    Lv Y H, Chen J K, Doebeli M, Li Y L, Shi X, Chen L D 2015 J. Inorg. Mater. 30 1115Google Scholar

    [62]

    Yang L, Wei J, Ma Z, Song P, Ma J, Zhao Y, Huang Z, Zhang M, Yang F, Wang X 2019 Nanomaterials 9 12

    [63]

    Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607Google Scholar

    [64]

    Hu Q, Zhu Z, Zhang Y, Li X J, Song H, Zhang Y 2018 J. Mater. Chem. A 6 23417Google Scholar

    [65]

    Zhong B, Zhang Y, Li W, Chen Z, Cui J, Li W, Xie Y, Hao Q, He Q 2014 Appl. Phys. Lett. 105 123902Google Scholar

    [66]

    Cui J, Liu X, Zhang X, Li Y, Deng Y 2011 J. Appl. Phys. 110 023708Google Scholar

    [67]

    Boukai A I, Bunimovich Y, Tahir Kheli J, Yu J K, Goddard W A, 3 rd, Heath J R 2008 Nature 451 168Google Scholar

    [68]

    Bhuse V M, Hankare P P, Garadkar K M, Khomane A S 2003 Mater. Chem. Phys. 80 82Google Scholar

    [69]

    Pathan H M, Lokhande C D, Amalnerkar D P, Seth T 2003 Appl. Surf. Sci. 211 48Google Scholar

    [70]

    Dhanam M, Manoj P K, Prabhu R R 2005 J. Cryst. Growth 280 425Google Scholar

    [71]

    Hu Y, Afzaal M, Malik M A, O’Brien P 2006 J. Cryst. Growth 297 61Google Scholar

    [72]

    Hiramatsu H, Koizumi I, Kim K B, Yanagi H, Kamiya T, Hirano M, Matsunami N, Hosono H 2008 J. Appl. Phys. 104 113723Google Scholar

    [73]

    Yang M, Shen Z, Liu X, Wang W 2016 J. Electron. Mater. 45 1974Google Scholar

    [74]

    Romero J J, Perez Taborda J A, Briones F, Martín González M S 2016 12th European Conference on Thermoelectrics, Madrid, Spain, September 24–26, 2014

    [75]

    Liu K, Jing M, Zhang L, Li J, Shi L 2018 Integr. Ferroelectr. 189 71Google Scholar

    [76]

    Forster J D, Lynch J J, Coates N E, Liu J, Jang H, Zaia E, Gordon M P, Szybowski M, Sahu A, Cahill D G, Urban J J 2017 Sci. Rep. 7 2765Google Scholar

    [77]

    Lu Y, Ding Y, Qiu Y, Cai K, Yao Q, Song H, Tong L, He J, Chen L 2019 ACS Appl. Mater. Interfaces 11 12819Google Scholar

    [78]

    邓元, 张义政, 王瑶, 高洪利 2014 航空学报 35 2733

    Deng Y, Zhang Y Z, Wang Y, Gao H L 2014 Acta Aeronaut. Astronaut. Sin. 35 2733

    [79]

    Jin Q, Jiang S, Zhao Y, Wang D, Qiu J, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K, Gao N, Liu C, Cheng H M, Jiang X 2019 Nat. Mater. 18 62Google Scholar

    [80]

    Bahk J H, Fang H, Yazawa K, Shakouri A 2015 J. Mater. Chem. C 3 10362Google Scholar

    [81]

    Liu X, Long Y Z, Liao L, Duan X, Fan Z 2012 ACS Nano 6 1888Google Scholar

    [82]

    Lu Y, Qiu Y, Jiang Q, Cai K, Du Y, Song H, Gao M, Huang C, He J, Hu D 2018 ACS Appl. Mater. Interfaces 10 42310Google Scholar

    [83]

    Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polym. Sci. 37 820Google Scholar

    [84]

    Fan Z, Razavi H, Do J W, Moriwaki A, Ergen O, Chueh Y L, Leu P W, Ho J C, Takahashi T, Reichertz L A, Neale S, Yu K, Wu M, Ager J W, Javey A 2009 Nat. Mater. 8 648Google Scholar

    [85]

    He Y, Wang X, Gao Y, Hou Y, Wan Q 2018 J. Semicond. 39 011005Google Scholar

    [86]

    Lu Y, Qiu Y, Cai K, Ding Y, Wang M, Jiang C, Yao Q, Huang C, Chen L, He J 2020 Energy. Environ. Sci. 13 1240Google Scholar

    [87]

    Zhao K, Blichfeld A B, Chen H, Song Q, Zhang T, Zhu C, Ren D, Hanus R, Qiu P, Iversen B B, Xu F, Snyder G J, Shi X, Chen L 2017 Chem. Mat. 29 6367Google Scholar

    [88]

    Finefrock S W, Zhu X, Sun Y, Wu Y 2015 Nanoscale 7 5598Google Scholar

    [89]

    Im H, Moon H G, Lee J S, Chung I Y, Kang T J, Kim Y H 2015 Nano Res. 7 443

    [90]

    Kim S J, Lee H E, Choi H, Kim Y, We J H, Shin J S, Lee K J, Cho B J 2016 ACS Nano 10 10851Google Scholar

  • 图 1  Cu2Se高温β相晶体结构[34] (a)在8c和32f间隙位置显示有铜原子的晶胞; (b)沿着立方[$1\bar{1} 0$]方向的晶体结构的投影平面表示

    Fig. 1.  Cu2Se high temperature β- phase crystal structure[34] (a) Unit cell where the 8c and 32f interstitial positions are shown with Cu atoms; (b) projected plane representation of the crystal structure along the cubic [$1\bar{1} 0$] direction.

    图 2  (a)电镀沉积生长机制示意图; (b) Cu2Se薄膜的XRD图案; (c) Cu2Se薄膜的场发射扫描电子显微镜(FESEM)图像; (d) ITO基板上Cu2Se薄膜的AFM 3D图像[41]

    Fig. 2.  (a) Schematic diagram of Galvanic Deposition mechanism; (b) XRD pattern of Cu2Se thin film; (c) FESEM image of Cu2Se thin film; (d) AFM 3D image of Cu2Se film on ITO substrate[41].

    图 3  (a)溶解在硫醇胺中的Cu2–x Se溶液; (b) 旋涂和退火后, 玻璃上的Cu2Se薄膜; (c) (d) Cu2–x Se薄膜样品浸泡前的SEM图像; (d) Cu2–x Se薄膜样品浸泡后的SEM图像; (e) 旋涂制备的Cu2–x Se样品的XRD图谱[54]

    Fig. 3.  (a) Cu2–x Se solution dissolved in thiolamine; (b) after spin coating and annealing, the Cu2Se film on the glass; (c) SEM image of Cu2–x Se thin film sample before soaking; (d) SEM image of Cu2–x Se thin film sample after soaking; (e) XRD pattern of Cu2–x Se sample prepared by spin coating[54].

    图 4  (a) Al2O3基板上沉积的Cu2Se薄膜的照片; (b) 在573 K下退火的薄膜能量色散X射线光谱(EDS); (c) Al2O3基材上薄膜的横截面SEM分析; (d) 薄膜中纳米晶体的TEM分析, 其中虚线突出了晶界, 插图是TEM图像的相应FFT[40]

    Fig. 4.  (a) Photograph of Cu2Se thin film deposited on Al2O3 substrate; (b) energy dispersive X-ray spectroscopy (EDS) of thin film annealed at 573 K; (c) cross-sectional SEM analysis of thin film on Al2O3 substrate; (d) TEM analysis of nanocrystals in the thin film, the dotted line highlights the grain boundaries, the inset is the corresponding FFT of the TEM image.[40]

    图 5  (a) 脉冲混合反应磁控溅射(PHRMS)沉积系统; (b) 从标称成分分别为Cu/Se = 1, 2, 2.4, 3.6, 5和9的薄膜上获得的掠入射同步辐射X射线衍射图[60]

    Fig. 5.  (a) Pulse hybrid reactive magnetron sputtering (PHRMS) deposition system; (b) grazing incident synchrotron radiation X Ray diffraction pattern obtained from a film with a nominal composition of Cu/Se = 1, 2, 2.4, 3.6, 5 and 9[60].

    图 6  具有不同铜/硒比的薄膜的SEM图像[60]  (a) Cu/Se = 1; (b) Cu/Se = 2; (c) Cu/Se = 2.4; (d) Cu/Se = 3.6; (e) Cu/Se = 5; (f) Cu/Se = 9

    Fig. 6.  SEM images of films with different copper/selenium ratios[60] (a) Cu/Se = 1; (b) Cu/Se = 2; (c) Cu/Se = 2.4; (d) Cu/Se = 3.6; (e) Cu/Se = 5; (f) Cu/Se = 9.

    图 7  (a)由各种Cu2+x Se靶沉积的Cu2–y Se膜中的XRD图案; (b) 根据布拉格定律计算的(001)面的晶面晶体间距(c); (c) Cu2Se膜的截面HRTEM图像; (d) (e)不同Cu2–x Se靶沉积的Cu2–y Se膜的FESEM图像, (d) x = 0.1, (d) x = 0.3 [10]

    Fig. 7.  (a) XRD patterns in Cu2–y Se films deposited from various Cu2+x Se targets; (b) (001) plane crystal spacing (c) calculated according to Bragg's law; (c) HRTEM image of the cross-section of Cu2Se film; (d)(e) FESEM images of Cu2–y Se films deposited on different Cu2–x Se targets, (d) x = 0.1, (e) x = 0.3 [10]

    图 8  (a)在不同温度下退火的Cu2Se薄膜中的室温载流子浓度; (b)电导率对薄膜中载流子浓度的依赖性; (c)塞贝克系数对薄膜中载流子浓度的依赖性; (d) (e) 柔性塑料基板上Cu2Se薄膜的热电性能; (f)沉积在聚酰亚胺基板上的薄膜的电导率σ, (g)塞贝克系数S, (h) 功率因数PF = σS2 [40]

    Fig. 8.  (a) Room temperature carrier concentration in Cu2Se thin films annealed at different temperatures; (b) dependence of conductivity on carrier concentration in thin films; (c) dependence of Seebeck coefficient on carrier concentration in film; (d)(e) thermoelectric properties of Cu2Se film on flexible plastic substrate, (f) conductivity σ of the film deposited on polyimide substrate, (g) Seebeck coefficient S, (h) power factor PF = σS2 [40].

    图 9  (a) Cu2Se/PEDOT: PSS复合膜的输出电压与温度梯度的关系; (b) 在不同温差下的输出电压和功率与电流的关系; (c) 设备的数码照片; (d) 由于手臂和周围环境之间的温差而产生的4.5 mV电压的照片; (e) 将茶水倒入500 mL烧杯中直至液位到达设备下边缘时产生的15.4 mV电压的照片, d部分和e部分的插图是红外热像图[77]

    Fig. 9.  (a) Cu2Se/PEDOT: Relationship between the output voltage of the PSS composite film and the temperature gradient; (b) relationship between output voltage and power and current under different temperature differences; (c) digital photos of the device; (d) photo of the 4.5 mV voltage generated due to the temperature difference between the arm and the surrounding environment; (e) pour the tea water into a 500 mL beaker until the liquid level reaches the bottom edge of the device at 15.4 mV voltage, where Illustrations in the (d) and (e) parts are infrared thermal images[77]

    表 1  近年来Cu2Se薄膜热电性能研究进展

    Table 1.  Research progress of Cu2Se thin film thermoelectric properties in recent years.

    MethodsFilmCu/SeCrystallite
    size/mm
    S/μV·K–1σ/
    ×103 S/m
    κ/
    W·(m·K)–1
    PF/
    mW·(m·K2) –1
    ZTRef.
    Chemical
    deposition
    6001.83818[68]
    3302.1251[69]
    4031.9637.03917.8[70]
    17001.818.13 × 103[71]
    Pulsed laser
    deposition
    401.7 < 10450[72]
    23457130619[10]
    6010350[61]
    Electrochemial
    deposition
    90—1001.92—1.890.14—0.22[42]
    1.7840—5080270.771730.07[41]
    2.1913456130[73]
    Sputtering deposition1—3100010—100100[74]
    3—10100 > 1001
    48—1311.77737.31.4—4.9[5]
    600—8501—925—841001000.8 ± 0.11100.4[60]
    Spin coating
    process
    300—50044.603[75]
    62.61.9—1.995200—250250.626530.34[54]
    50—100801000.4—1.40.14[76]
    551.79 ± 0.06101.3—1.5620[40]
    Simple mechanical
    pressing
    10000—500001.74314.3557.820.79111.840.04[9]
    Wet-chemical
    process
    80001.9850.8104.70.25—0.3270.30.3[77]
    下载: 导出CSV
  • [1]

    Lu P, Liu H, Yuan X, Xu F, Shi X, Zhao K, Qiu W, Zhang W, Chen L 2015 J. Mater. Chem. A 3 6901Google Scholar

    [2]

    Hussain R A, Hussain I 2020 Solid State Sci. 100 106101Google Scholar

    [3]

    Malekar V P, Gangawane S A, Fulari V J 2020 Mater. Today Proc. 23 202Google Scholar

    [4]

    Sharma K, Sharma D K, Kumar V 2020 Optik 206 164376Google Scholar

    [5]

    Li Y, Fan P, Zheng Z, Luo J, Liang G, Guo S 2016 J. Alloy. Compd. 658 880Google Scholar

    [6]

    Wei J J, Yang L L, Ma Z, Song P S, Zhang M L, Ma J, Yang F H, Wang X D 2020 J. Mater. Sci. 55 12642Google Scholar

    [7]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [8]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229Google Scholar

    [9]

    Pammi S V N, Jella V, Choi J S, Yoon S G 2017 J. Mater. Chem. C 5 763Google Scholar

    [10]

    Lv Y, Chen J, Zheng R K, Shi X, Song J, Zhang T, Li X, Chen L 2015 Ceram. Int. 41 7439Google Scholar

    [11]

    Ma Z, Liu Y, Deng L, Zhang M, Zhang S, Ma J, Song P, Liu Q, Ji A, Yang F, Wang X 2018 Nanomaterials 8 77Google Scholar

    [12]

    Chen X, Dai W, Wu T, Luo W, Yang J, Jiang W, Wang L 2018 Coatings 8 244Google Scholar

    [13]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B Condens Matter 47 12727Google Scholar

    [14]

    Dresselhaus M S, Dresselhaus G, Sun X, Zhang Z, Cronin S B, Koga T 1999 Phys. Solid State 41 679Google Scholar

    [15]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B J N 2001 Nature 413 597Google Scholar

    [16]

    Zhou Y, Matsubara I, Shin W, Izu N, Murayama N 2004 J. Appl. Phys. 95 625Google Scholar

    [17]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [18]

    Zheng X J, Zhu L, Zhou Y H, Zhang Q 2005 Appl. Phys. Lett. 87 2229

    [19]

    Mehdizadeh D A, Zebarjadi M, He J, Tritt T M 2015 Mater. Sci. Eng. R 97 1Google Scholar

    [20]

    Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger S C, Stöger P M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q, Bauer E 2019 Nature 576 85Google Scholar

    [21]

    Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y 2019 Adv. Mater. 31 1801072Google Scholar

    [22]

    Zhao W Y, Zhang Q J, Sun Z G, Zhu W T, Wei P, Fang W B, Tian Y, Nie X L, Li P 2019 J. Inorg. Mater. 34 6

    [23]

    Gahtori B, Bathula S, Tyagi K, Jayasimhadri M, Srivastava A K, Singh S, Budhani R C, Dhar A 2015 Nano Energy 13 36Google Scholar

    [24]

    Zhao K, Liu K, Yue Z, Wang Y, Song Q, Li J, Guan M, Xu Q, Qiu P, Zhu H, Chen L, Shi X 2019 Adv. Mater. 190 3480

    [25]

    Byeon D, Sobota R, Delime Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, Takeuchi T 2019 Nat. Commun. 10 72Google Scholar

    [26]

    Byeon D, Sobota R, Singh S, Ghodke S, Choi S, Kubo N, Adachi M, Yamamoto Y, Matsunami M, Takeuchi T 2020 J. Electron. Mater. 49 2855Google Scholar

    [27]

    Chen H Y, Shi X, Chen L D, Chou P F 2019 J. Inorg. Mater. 34 1041

    [28]

    Kim J H, Oh S, Sohn W H, Rhyee J S, Park S D, Kang H, Ahn D 2015 Acta Mater. 100 32Google Scholar

    [29]

    Tak J Y, Nam W H, Lee C, Kim S, Lim Y S, Ko K, Lee S, Seo W S, Cho H K, Shim J H, Park C H 2018 Chem. Mat. 30 3276Google Scholar

    [30]

    Liu W, Shi X, Hong M, Yang L, Moshwan R, Chen Z G, Zou J 2018 J. Mater. Chem. C 6 13225

    [31]

    Sun Y, Xi L, Yang J, Wu L, Shi X, Chen L, Snyder J, Yang J, Zhang W 2017 J. Mater. Chem. A 5 5098Google Scholar

    [32]

    Olvera A A, Moroz N A, Sahoo P, Ren P, Bailey T P, Page A A, Uher C, Poudeu P F P 2017 Energy & Environ. Sci. 10 1668

    [33]

    R. D. Heyding 1966 Can. J. Chem. 44 1233Google Scholar

    [34]

    Namsani S, Auluck S, Singh J K 2017 Appl. Phys. Lett. 111 163903Google Scholar

    [35]

    Eikeland E, Blichfeld A B, Borup K A, Zhao K, Overgaard J, Shi X, Chen L, Iversen B B 2017 Iucrj 4 476Google Scholar

    [36]

    Bailey T P, Hui S, Xie H, Olvera A, Poudeu P F P, Tang X, Uher C 2016 J. Mater. Chem. A 4 17225Google Scholar

    [37]

    Yang L, Chen Z G, Han G, Hong M, Zou Y, Zou J 2015 Nano Energy 16 367Google Scholar

    [38]

    Kim H, Ballikaya S, Chi H, Ahn J P, Ahn K, Uher C, Kaviany M 2015 Acta Mater. 86 247Google Scholar

    [39]

    Ballikaya S, Chi H, Salvador J R, Uher C 2013 J. Mater. Chem. A 1 12478Google Scholar

    [40]

    Lin Z, Hollar C, Kang J S, Yin A, Wang Y, Shiu H Y, Huang Y, Hu Y, Zhang Y, Duan X 2017 Adv. Mater. 29 1606662Google Scholar

    [41]

    Ghosh A, Kulsi C, Banerjee D, Mondal A 2016 Appl. Surf. Sci. 369 525Google Scholar

    [42]

    Liu T C, Hu Y, Chang W B 2014 Mater. Sci. Eng. B 180 33Google Scholar

    [43]

    Rajesh D, Chandrakanth R R, Sunandana 2013 J. Apple. Phys. 4 65

    [44]

    Mansour B A, Zawawi I K E L, Elsayed A H E, Hameed T A 2018 J. Alloy. Comp. 740 1125Google Scholar

    [45]

    Emslie A G, Bonner F T, Peck L G 1958 J. Appl. Phys. 29 858Google Scholar

    [46]

    王东, 刘红缨, 贺军辉, 刘林林 2012 影像科学与光化学 30 91Google Scholar

    Wang D, Liu H Y, He J H, Liu L L, 2012 Imaging Sci. Photochem. 30 91Google Scholar

    [47]

    Mitzi D B, Kosbar L L, Murray C E, Copel M, Afzali A 2004 Nature 428 299Google Scholar

    [48]

    Mitzi D B, Copel M, Murray C E 2006 Adv. Mater. 18 2448Google Scholar

    [49]

    Sheng J, Han K L, Hong T, Choi W H, Park J S 2018 J. Semicond. 39 011008Google Scholar

    [50]

    Mihi A, Ocana M, Miguez H 2006 Adv. Mater. 18 2244Google Scholar

    [51]

    Zhang T, Yao G, Pan T, Lu Q 2020 J. Semicond. 41 041602Google Scholar

    [52]

    Lee H, Lee B P, Messersmith P B 2007 Nature 448 338Google Scholar

    [53]

    Lee J H, Oh J Y, Kim D M 1999 J. Mater. Sci.-Mater. Med. 10 629Google Scholar

    [54]

    Scimeca M R, Yang F, Zaia E, Chen N, Zhao P, Gordon M P, Forster J D, Liu Y S, Guo J, Urban J J, Sahu A 2019 ACS Appl. Energy Mater. 2 1517Google Scholar

    [55]

    Day T W, Weldert K S, Zeier W G, Chen B R, Moffitt S L, Weis U, Jochum K P, Panthoefer M, Bedzyk M J, Snyder G J, Tremel W 2015 Chem. Mater. 27 7018Google Scholar

    [56]

    Zeng Y, Liang G, Fan P, Xie Y, Fan B, Hu J, Zheng Z, Zhang X, Luo J, Zhang D 2017 J. Mater. Sci.-Mater. Electron. 28 13763Google Scholar

    [57]

    Shen S, Zhu W, Deng Y, Zhao H, Peng Y, Wang C 2017 Appl. Surf. Sci. 414 197Google Scholar

    [58]

    Kim H J, Kim K C, Choi W C, Kim J S, Kim Y H, Kim S I, Park C 2012 J. Nanosci. Nanotechnol. 12 3629Google Scholar

    [59]

    Yuan D, Zhi Wei Z 2015 J. Inorg. Mater. 30 1Google Scholar

    [60]

    Perez Taborda J A, Vera L, Caballero Calero O, Lopez E O, Romero J J, Stroppa D G, Briones F, Martin Gonzalez M 2017 Adv. Mater. Technol. 2 7

    [61]

    Lv Y H, Chen J K, Doebeli M, Li Y L, Shi X, Chen L D 2015 J. Inorg. Mater. 30 1115Google Scholar

    [62]

    Yang L, Wei J, Ma Z, Song P, Ma J, Zhao Y, Huang Z, Zhang M, Yang F, Wang X 2019 Nanomaterials 9 12

    [63]

    Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607Google Scholar

    [64]

    Hu Q, Zhu Z, Zhang Y, Li X J, Song H, Zhang Y 2018 J. Mater. Chem. A 6 23417Google Scholar

    [65]

    Zhong B, Zhang Y, Li W, Chen Z, Cui J, Li W, Xie Y, Hao Q, He Q 2014 Appl. Phys. Lett. 105 123902Google Scholar

    [66]

    Cui J, Liu X, Zhang X, Li Y, Deng Y 2011 J. Appl. Phys. 110 023708Google Scholar

    [67]

    Boukai A I, Bunimovich Y, Tahir Kheli J, Yu J K, Goddard W A, 3 rd, Heath J R 2008 Nature 451 168Google Scholar

    [68]

    Bhuse V M, Hankare P P, Garadkar K M, Khomane A S 2003 Mater. Chem. Phys. 80 82Google Scholar

    [69]

    Pathan H M, Lokhande C D, Amalnerkar D P, Seth T 2003 Appl. Surf. Sci. 211 48Google Scholar

    [70]

    Dhanam M, Manoj P K, Prabhu R R 2005 J. Cryst. Growth 280 425Google Scholar

    [71]

    Hu Y, Afzaal M, Malik M A, O’Brien P 2006 J. Cryst. Growth 297 61Google Scholar

    [72]

    Hiramatsu H, Koizumi I, Kim K B, Yanagi H, Kamiya T, Hirano M, Matsunami N, Hosono H 2008 J. Appl. Phys. 104 113723Google Scholar

    [73]

    Yang M, Shen Z, Liu X, Wang W 2016 J. Electron. Mater. 45 1974Google Scholar

    [74]

    Romero J J, Perez Taborda J A, Briones F, Martín González M S 2016 12th European Conference on Thermoelectrics, Madrid, Spain, September 24–26, 2014

    [75]

    Liu K, Jing M, Zhang L, Li J, Shi L 2018 Integr. Ferroelectr. 189 71Google Scholar

    [76]

    Forster J D, Lynch J J, Coates N E, Liu J, Jang H, Zaia E, Gordon M P, Szybowski M, Sahu A, Cahill D G, Urban J J 2017 Sci. Rep. 7 2765Google Scholar

    [77]

    Lu Y, Ding Y, Qiu Y, Cai K, Yao Q, Song H, Tong L, He J, Chen L 2019 ACS Appl. Mater. Interfaces 11 12819Google Scholar

    [78]

    邓元, 张义政, 王瑶, 高洪利 2014 航空学报 35 2733

    Deng Y, Zhang Y Z, Wang Y, Gao H L 2014 Acta Aeronaut. Astronaut. Sin. 35 2733

    [79]

    Jin Q, Jiang S, Zhao Y, Wang D, Qiu J, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K, Gao N, Liu C, Cheng H M, Jiang X 2019 Nat. Mater. 18 62Google Scholar

    [80]

    Bahk J H, Fang H, Yazawa K, Shakouri A 2015 J. Mater. Chem. C 3 10362Google Scholar

    [81]

    Liu X, Long Y Z, Liao L, Duan X, Fan Z 2012 ACS Nano 6 1888Google Scholar

    [82]

    Lu Y, Qiu Y, Jiang Q, Cai K, Du Y, Song H, Gao M, Huang C, He J, Hu D 2018 ACS Appl. Mater. Interfaces 10 42310Google Scholar

    [83]

    Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polym. Sci. 37 820Google Scholar

    [84]

    Fan Z, Razavi H, Do J W, Moriwaki A, Ergen O, Chueh Y L, Leu P W, Ho J C, Takahashi T, Reichertz L A, Neale S, Yu K, Wu M, Ager J W, Javey A 2009 Nat. Mater. 8 648Google Scholar

    [85]

    He Y, Wang X, Gao Y, Hou Y, Wan Q 2018 J. Semicond. 39 011005Google Scholar

    [86]

    Lu Y, Qiu Y, Cai K, Ding Y, Wang M, Jiang C, Yao Q, Huang C, Chen L, He J 2020 Energy. Environ. Sci. 13 1240Google Scholar

    [87]

    Zhao K, Blichfeld A B, Chen H, Song Q, Zhang T, Zhu C, Ren D, Hanus R, Qiu P, Iversen B B, Xu F, Snyder G J, Shi X, Chen L 2017 Chem. Mat. 29 6367Google Scholar

    [88]

    Finefrock S W, Zhu X, Sun Y, Wu Y 2015 Nanoscale 7 5598Google Scholar

    [89]

    Im H, Moon H G, Lee J S, Chung I Y, Kang T J, Kim Y H 2015 Nano Res. 7 443

    [90]

    Kim S J, Lee H E, Choi H, Kim Y, We J H, Shin J S, Lee K J, Cho B J 2016 ACS Nano 10 10851Google Scholar

  • [1] 杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚. 并联模型研究双层热电薄膜热电性能. 物理学报, 2023, 72(22): 228401. doi: 10.7498/aps.72.20231259
    [2] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] 郑建军, 张丽萍. 单层Cu2X的热电性质. 物理学报, 2023, 72(8): 086301. doi: 10.7498/aps.72.20222015
    [4] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能. 物理学报, 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [5] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [6] 许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康. 层状Bi1–xSbxSe纳米薄膜的制备及其热电性能研究. 物理学报, 2022, 71(19): 197301. doi: 10.7498/aps.71.20220834
    [7] 聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价. 物理学报, 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [8] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长. 物理学报, 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [9] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [10] 王娇, 刘少辉, 周梦, 郝好山. 抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能. 物理学报, 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [11] 张华, 陈少平, 龙洋, 樊文浩, 王文先, 孟庆森. 微波低温制备Mg2Si0.4Sn0.6-yBiy热电材料的传输机理. 物理学报, 2015, 64(24): 247302. doi: 10.7498/aps.64.247302
    [12] 刘冉, 高琳洁, 李龙江, 翟胜军, 王江龙, 傅广生, 王淑芳. Ca2+掺杂对CdO多晶热电性能的影响. 物理学报, 2015, 64(21): 218101. doi: 10.7498/aps.64.218101
    [13] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [14] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [15] 范平, 蔡兆坤, 郑壮豪, 张东平, 蔡兴民, 陈天宝. Bi-Sb-Te基热电薄膜温差电池离子束溅射制备与表征. 物理学报, 2011, 60(9): 098402. doi: 10.7498/aps.60.098402
    [16] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [17] 熊 飞, 张 辉, 李洪山, 张鹏翔, 蒋最敏. 退火氧压对YBa2Cu3O7-x薄膜中的激光感生热电电压效应的影响. 物理学报, 2008, 57(8): 5237-5243. doi: 10.7498/aps.57.5237
    [18] 陈晓阳, 徐象繁, 胡荣星, 任 之, 许祝安, 曹光旱. LixNayCoO2的制备和热电性质. 物理学报, 2007, 56(3): 1627-1631. doi: 10.7498/aps.56.1627
    [19] 李金华, 袁宁一, 陈王丽华, 林成鲁. 用离子束增强沉积从V2O5粉末制备高热电阻温度系数VO_2薄膜. 物理学报, 2002, 51(8): 1788-1792. doi: 10.7498/aps.51.1788
    [20] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
计量
  • 文章访问数:  8144
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2020-11-19
  • 上网日期:  2021-03-29
  • 刊出日期:  2021-04-05

/

返回文章
返回