搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价

聂晓蕾 余灏成 朱婉婷 桑夏晗 魏平 赵文俞

引用本文:
Citation:

石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价

聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞

Design, fabrication and performance evaluation of graphene/Bi0.5Sb1.5Te3 flexible thermoelectric films and in-plane heat dissipation devices

Nie Xiao-Lei, Yu Hao-Cheng, Zhu Wan-Ting, Sang Xia-Han, Wei Ping, Zhao Wen-Yu
PDF
HTML
导出引用
  • 基于柔性热电薄膜制冷的面内散热技术有望为电子器件高效面内散热提供解决方案, 但柔性热电薄膜电输运性能太低和面内散热器件结构设计困难严重制约了该技术在电子元器件散热中的应用. 本文通过在环氧树脂/Bi0.5Sb1.5Te3柔性热电薄膜中掺入具有同时调控电热输运行为功能的石墨烯, 发现不仅有助于Bi0.5Sb1.5Te3晶粒沿(000l)择优取向, 而且还提供了载流子快速传输通道, 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜的载流子浓度和迁移率同时显著增大; 石墨烯掺入量为1.0%的柔性热电薄膜室温最高功率因子达到1.56 mW/(K2·m), 与环氧树脂/Bi0.5Sb1.5Te3柔性热电薄膜相比提高了71%, 其最大制冷温差提高了1倍. 利用这种高性能石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜制冷, 设计并制备出了级联结构高效面内散热器件, 发现该器件可以将热量从热源区逐级传输至散热区, 实现热源区温度下降1.4—1.9 ℃, 展现出了高效稳定的面内散热能力.
    In-plane heat dissipation technology based on flexible thermoelectric film cooling is expected to provide a solution to efficient in-plane heat dissipation of electronic devices. However, the low electrical transport performance of flexible thermoelectric films and the difficulty in designing the structure of in-plane heat dissipation device seriously restrict the applications of this technology in heat dissipation of electronic devices. In this work, an epoxy/Bi0.5Sb1.5Te3 flexible thermoelectric film is incorporated with graphene which can simultaneously regulate the electrical and thermal transport behaviors. It is found that the incorporating of graphene not only contributes to the preferential orientation of Bi0.5Sb1.5Te3 grains along (000l), but also provides a fast carrier transport channel. The carrier concentration and mobility of graphene/Bi0.5Sb1.5Te3 flexible thermoelectric film are simultaneously increased. Comparing with the epoxy/Bi0.5Sb1.5Te3 flexible thermoelectric film, the highest power factor of the flexible thermoelectric film with 1.0% graphene at room temperature reaches 1.56 mW/(K2·m), increased by 71%, while the cooling temperature difference is doubled. Using this high-performance graphene/Bi0.5Sb1.5Te3 flexible thermoelectric film cooling, a cascade structure high-efficiency in-plane heat dissipation device is designed and fabricated. The device can dissipate heat from the heat source area to the heat dissipation area step by step and reduce the temperature of the heat source area by 1.4–1.9 ℃, showing an efficient and stable in-plane heat dissipation capability.
      通信作者: 赵文俞, wyzhao@whut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0703603, 2019YFA0704903)、国家自然科学基金(批准号: 92163122, 11834012, 52130203, 91963207)和佛山仙湖实验室开放基金(批准号: XHT2020-004)资助的课题
      Corresponding author: Zhao Wen-Yu, wyzhao@whut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0703603, 2019YFA0704903), the National Natural Science Foundation of China (Grant Nos. 92163122, 11834012, 52130203, 91963207), and the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, China (Grant No. XHT2020-004).
    [1]

    Anandan S S, Ramalingam V 2008 Therm. Sci. 12 5Google Scholar

    [2]

    郭磊 2013 低温与超导 42 62Google Scholar

    Guo L 2013 Cryo. Supercond. 42 62Google Scholar

    [3]

    Ali H M, Ashraf M J, Giovannelli A, Irfan M, Irshad T B, Hamid H M, Hassan F, Arshad A 2018 Int. J. Heat Mass Tran. 123 272Google Scholar

    [4]

    汤勇, 孙亚隆, 唐恒, 万珍平, 袁伟 2021 机械工程学报 57 1

    Tang Y, Sun Y L, Tang H, Wan Z P, Yuan W 2021 J. Mech. Eng. 57 1

    [5]

    王晗, 袁礼, 王超, 王如志 2021 物理学报 70 104401Google Scholar

    Wang H, Yuan L, Wang C, Wang R Z 2021 Acta Phys. Sin. 70 104401Google Scholar

    [6]

    Yu Y D, Zhu W, Kong X X, Wang Y L, Zhu P C, Deng Y 2020 Front. Chem. Sci. Eng. 14 492Google Scholar

    [7]

    祝薇, 邓元, 王瑶, 高洪利, 胡少雄 2015 北京航空航天大学学报 41 1435Google Scholar

    Zhu W, Deng Y, Wang Y, Gao H L, Hu S X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 1435Google Scholar

    [8]

    Kim C, Park S, Yoon J, Shen H, Jeong M W, Lee H, Joo Y, Joo Y C 2019 Electron. Mater. Lett. 15 686Google Scholar

    [9]

    Goncalves L M, Rocha J G, Couto C, Aipuim P, Min G, Rowe D M, Correia J H 2007 J. Micromech. Microeng. 17 168Google Scholar

    [10]

    Tan M, Deng Y, Hao Y M 2014 Sci. Adv. Mater. 6 1Google Scholar

    [11]

    Shen H, Lee S, Kang J G, Eom T Y, Lee H, Kang C, Han S 2018 J. Alloy. Compd. 767 522Google Scholar

    [12]

    Liu S Y, Li G J, Lan M D, Piao Y J, Zhang Y N, Wang Q 2020 Curr. Appl. Phys. 20 400Google Scholar

    [13]

    Shang H J, Ding F Z, Deng Y, Zhang H, Dong Z B, Xu W J, Huang D X, Gu H W, Chen Z G 2018 Nanoscale 10 20189Google Scholar

    [14]

    Mu X, Zhou H Y, He D Q, Zhao W Y, Wei P, Zhu W T, Nie X L, Liu H J, Zhang Q J 2017 Nano Energy 33 55Google Scholar

    [15]

    陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [16]

    Kang W S, Chou W C, Li W J, Shen T H, Lin C S 2018 Thin Solid Films 660 108Google Scholar

    [17]

    Madan D, Wang Z Q, Chen A, Winslow R, Wright P K, Evans J W 2014 Appl. Phys. Lett. 104 013902Google Scholar

    [18]

    Lu Z Y, Layani M, Zhao X X, Tan L P, Sun T, Fan S F, Yan Q Y, Magdassi S, Hng H H 2014 Small 10 3551Google Scholar

    [19]

    Hollar C, Lin Z Y, Kongara M, Varghese T, Karthik C, Schimpy J, Eixenherger J, Davis P H., Wu Y Q, Duan X F, Zhang Y L, Estrada D 2020 Adv. Mater. Technol. 5 2000600Google Scholar

    [20]

    Cao Z, Koukharenko E, Tudor M J, Torah R N, Beeby S P 2016 Sensor. Actuat. A 238 196Google Scholar

    [21]

    Shin S, Kumar R, Roh J W, Ko D S, Kim H S, Kim S I, Yin L, Schlossberg S M, Cui S, You J M, Kwon S, Zheng J L, Wang J, Chen Renkun 2017 Sci. Rep. 7 7317Google Scholar

    [22]

    Hou W K, Nie X L, Zhao W Y, Zhou H Y, Mu X, Zhu W T, Zhang Q J 2018 Nano Energy 50 766Google Scholar

    [23]

    Park S H, Jo S, Kwon B, Kim F, Ban H W, Lee J E, Gu D H, Lee S H, Hwang Y, Kim J S, Hyun D B, Lee S, Choi K J, Jo W, Son J S 2016 Nat. Commun. 7 13403Google Scholar

    [24]

    Feng J J, Zhu W, Deng Y, Song Q S, Zhang Q Q 2019 ACS Appl. Energy Mater. 2 2828Google Scholar

    [25]

    Varghese T, Dun C, Kempf N, Saeidi-Javash M, Karthik C, Richardson J, Hollar C, Estrada D, Zhang Y L 2020 Adv. Funct. Mater. 30 1905796Google Scholar

    [26]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar

    [27]

    Zong P A, Hanus R, Dylla M, Tang Y S, Liao J C, Zhang Q H, Snyder G J, Chen L D 2017 Energy Environ. Sci. 10 183Google Scholar

    [28]

    Rahman J U, Du N V, Nam W H, Shin W H, Lee K H, Seo W S, Kim M H, Lee S 2019 Sci. Rep. 9 8624Google Scholar

    [29]

    刘恩科, 朱秉升, 罗晋生 2017 半导体物理学 (第7版) (北京: 电子工业出版社) 第187–190页

    Liu E K, Zhu B S, Luo J S 2017 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp187–190

    [30]

    Choi J, Lee K, Park C R, Kim H 2015 Carbon 94 577Google Scholar

    [31]

    冯雪飞 2014 博士学位论文 (合肥: 中国科学技术大学)

    Feng X F 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • 图 1  复合热电薄膜的X射线衍射分析 (a) XRD图谱; (b) 取向因子

    Fig. 1.  X ray diffraction analysis of the composite thermoelectric films: (a) XRD patterns; (b) orientation factors of (000l).

    图 2  复合热电薄膜的SEM图像 (a) G00, (b) G05, (c) G10, (d) G15, (e) G20的表面二次电子图像; (f) 孔隙率与x的关系; (g) G00, (h) G10的截面二次电子图像

    Fig. 2.  SEM images of the composite thermoelectric films: The surface secondary electron images of (a) G00, (b) G05, (c) G10, (d) G15, (e) G20; (f) the porosities versus x; the sectional secondary electron images of (g) G00, (h) G10.

    图 3  热电薄膜电输运性能 (a) 电导率; (b) Seebeck系数; (c) 功率因子; (d) 载流子迁移率和载流子浓度

    Fig. 3.  Electrical transport properties of the composite films: (a) Electrical conductivity; (b) Seebeck coefficient; (c) power factor; (d) carrier mobility and carrier concentration.

    图 4  Bi0.5Sb1.5Te3和石墨烯的能带图 (a) Bi0.5Sb1.5Te3的UPS光谱; (b)石墨烯的UPS光谱; (c) 金标样的UPS光谱; (d) Bi0.5Sb1.5Te3和石墨烯接触前后的界面能带结构示意图

    Fig. 4.  Band diagram of Bi0.5Sb1.5Te3 and graphene: (a) UPS spectrum of Bi0.5Sb1.5Te3; (b) UPS spectrum of graphene; (c) UPS spectrum of gold standard; (d) schematic diagram of the interface energy band structure before and after contact between Bi0.5Sb1.5Te3 and graphene.

    图 5  单臂原型器件G00D和G10D制冷端和散热端温度在不同工作电流下随测试时间的变化曲线(蓝色实线为G00D曲线, 红色实线为G10D曲线, 黑色虚线为Tr曲线) (a) I = 0.06 A; (b) I = 0.08 A; (c) I = 0.10 A; (d) I = 0.15 A; (e) I = 0.20 A

    Fig. 5.  Time-dependent cooling performance of G00D and G10D under different working currents (the blue solid lines represent G00D, the red solid ones represent G10D, the black dash ones represent Tr): (a) I = 0.06 A; (b) I = 0.08 A; (c) I = 0.10 A; (d) I = 0.15 A; (e) I = 0.20 A.

    图 6  面内散热器件 (a) 结构设计图; (b) COMSOL模拟温度场分布图; (c) 实物照片; (d) 红外热成像仪拍摄的温度场分布图

    Fig. 6.  In-plane heat dissipation device: (a) The structure diagram; (b) temperature distribution map simulated by COMSOL; (c) digital photo of the as-fabricated device; (d) temperature distribution map captured by an infrared thermal imager.

    图 7  面内散热器件的制冷能力 (a) 测试装置图; (b) 加热片温度随测试时间关系曲线; (c) 面内散热器件六次断电-通电循环中加热片的温度变化情况

    Fig. 7.  Cooling performance of the in-plane heat dissipation device: (a) Test unit diagram; (b) time-dependent temperature of the heater; (c) ∆T of the heater.

  • [1]

    Anandan S S, Ramalingam V 2008 Therm. Sci. 12 5Google Scholar

    [2]

    郭磊 2013 低温与超导 42 62Google Scholar

    Guo L 2013 Cryo. Supercond. 42 62Google Scholar

    [3]

    Ali H M, Ashraf M J, Giovannelli A, Irfan M, Irshad T B, Hamid H M, Hassan F, Arshad A 2018 Int. J. Heat Mass Tran. 123 272Google Scholar

    [4]

    汤勇, 孙亚隆, 唐恒, 万珍平, 袁伟 2021 机械工程学报 57 1

    Tang Y, Sun Y L, Tang H, Wan Z P, Yuan W 2021 J. Mech. Eng. 57 1

    [5]

    王晗, 袁礼, 王超, 王如志 2021 物理学报 70 104401Google Scholar

    Wang H, Yuan L, Wang C, Wang R Z 2021 Acta Phys. Sin. 70 104401Google Scholar

    [6]

    Yu Y D, Zhu W, Kong X X, Wang Y L, Zhu P C, Deng Y 2020 Front. Chem. Sci. Eng. 14 492Google Scholar

    [7]

    祝薇, 邓元, 王瑶, 高洪利, 胡少雄 2015 北京航空航天大学学报 41 1435Google Scholar

    Zhu W, Deng Y, Wang Y, Gao H L, Hu S X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 1435Google Scholar

    [8]

    Kim C, Park S, Yoon J, Shen H, Jeong M W, Lee H, Joo Y, Joo Y C 2019 Electron. Mater. Lett. 15 686Google Scholar

    [9]

    Goncalves L M, Rocha J G, Couto C, Aipuim P, Min G, Rowe D M, Correia J H 2007 J. Micromech. Microeng. 17 168Google Scholar

    [10]

    Tan M, Deng Y, Hao Y M 2014 Sci. Adv. Mater. 6 1Google Scholar

    [11]

    Shen H, Lee S, Kang J G, Eom T Y, Lee H, Kang C, Han S 2018 J. Alloy. Compd. 767 522Google Scholar

    [12]

    Liu S Y, Li G J, Lan M D, Piao Y J, Zhang Y N, Wang Q 2020 Curr. Appl. Phys. 20 400Google Scholar

    [13]

    Shang H J, Ding F Z, Deng Y, Zhang H, Dong Z B, Xu W J, Huang D X, Gu H W, Chen Z G 2018 Nanoscale 10 20189Google Scholar

    [14]

    Mu X, Zhou H Y, He D Q, Zhao W Y, Wei P, Zhu W T, Nie X L, Liu H J, Zhang Q J 2017 Nano Energy 33 55Google Scholar

    [15]

    陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [16]

    Kang W S, Chou W C, Li W J, Shen T H, Lin C S 2018 Thin Solid Films 660 108Google Scholar

    [17]

    Madan D, Wang Z Q, Chen A, Winslow R, Wright P K, Evans J W 2014 Appl. Phys. Lett. 104 013902Google Scholar

    [18]

    Lu Z Y, Layani M, Zhao X X, Tan L P, Sun T, Fan S F, Yan Q Y, Magdassi S, Hng H H 2014 Small 10 3551Google Scholar

    [19]

    Hollar C, Lin Z Y, Kongara M, Varghese T, Karthik C, Schimpy J, Eixenherger J, Davis P H., Wu Y Q, Duan X F, Zhang Y L, Estrada D 2020 Adv. Mater. Technol. 5 2000600Google Scholar

    [20]

    Cao Z, Koukharenko E, Tudor M J, Torah R N, Beeby S P 2016 Sensor. Actuat. A 238 196Google Scholar

    [21]

    Shin S, Kumar R, Roh J W, Ko D S, Kim H S, Kim S I, Yin L, Schlossberg S M, Cui S, You J M, Kwon S, Zheng J L, Wang J, Chen Renkun 2017 Sci. Rep. 7 7317Google Scholar

    [22]

    Hou W K, Nie X L, Zhao W Y, Zhou H Y, Mu X, Zhu W T, Zhang Q J 2018 Nano Energy 50 766Google Scholar

    [23]

    Park S H, Jo S, Kwon B, Kim F, Ban H W, Lee J E, Gu D H, Lee S H, Hwang Y, Kim J S, Hyun D B, Lee S, Choi K J, Jo W, Son J S 2016 Nat. Commun. 7 13403Google Scholar

    [24]

    Feng J J, Zhu W, Deng Y, Song Q S, Zhang Q Q 2019 ACS Appl. Energy Mater. 2 2828Google Scholar

    [25]

    Varghese T, Dun C, Kempf N, Saeidi-Javash M, Karthik C, Richardson J, Hollar C, Estrada D, Zhang Y L 2020 Adv. Funct. Mater. 30 1905796Google Scholar

    [26]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar

    [27]

    Zong P A, Hanus R, Dylla M, Tang Y S, Liao J C, Zhang Q H, Snyder G J, Chen L D 2017 Energy Environ. Sci. 10 183Google Scholar

    [28]

    Rahman J U, Du N V, Nam W H, Shin W H, Lee K H, Seo W S, Kim M H, Lee S 2019 Sci. Rep. 9 8624Google Scholar

    [29]

    刘恩科, 朱秉升, 罗晋生 2017 半导体物理学 (第7版) (北京: 电子工业出版社) 第187–190页

    Liu E K, Zhu B S, Luo J S 2017 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp187–190

    [30]

    Choi J, Lee K, Park C R, Kim H 2015 Carbon 94 577Google Scholar

    [31]

    冯雪飞 2014 博士学位论文 (合肥: 中国科学技术大学)

    Feng X F 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • [1] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] 祝鑫强, 王剑, 朱璨, 罗丰, 陈树权, 徐佳辉, 徐峰, 王嘉赋, 张艳, 孙志刚. Co3Sn2S2单晶的磁性和电-热输运性能. 物理学报, 2023, 72(17): 177102. doi: 10.7498/aps.72.20230621
    [3] 唐昊, 白辉, 吕嘉南, 华思恒, 鄢永高, 杨东旺, 吴劲松, 苏贤礼, 唐新峰. 表面修饰工程协同优化Bi2Te3基微型热电器件的界面性能. 物理学报, 2022, 71(16): 167101. doi: 10.7498/aps.71.20220549
    [4] 王伟, 柳伟, 谢森, 葛浩然, 欧阳雨洁, 张程, 华富强, 张敏, 唐新峰. MnTe单晶薄膜的外延制备、本征点缺陷结构及电输运优化. 物理学报, 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [5] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长. 物理学报, 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [6] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [7] 陈单, 石丹丹, 潘贵军. 复杂网络电输运性能与通信序列熵之间的关联. 物理学报, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [8] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [9] 帅佳丽, 刘向鑫, 杨彪. 铁电半导体耦合薄膜电池中的反常载流子传输现象. 物理学报, 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [10] 孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇. 紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究. 物理学报, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [11] 董国义, 李龙江, 吕青, 王淑芳, 戴守愚, 王江龙, 傅光生. Lu3+掺杂对CdO陶瓷电、热输运性能的影响. 物理学报, 2014, 63(17): 178102. doi: 10.7498/aps.63.178102
    [12] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [13] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响. 物理学报, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [14] 袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文. Bi0.5Ba0.5FeO3 陶瓷的电性能及阻抗分析. 物理学报, 2011, 60(2): 025201. doi: 10.7498/aps.60.025201
    [15] 张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴. Ca位置换Fe的氧化物Ca1-xFexMnO3(x=00.12)的制备及电输运性能. 物理学报, 2011, 60(8): 087205. doi: 10.7498/aps.60.087205
    [16] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [17] 张飞鹏, 张忻, 路清梅, 张久兴. Ca3-x AgxCo4O9(x=0—0.05)氧化物的电输运性能. 物理学报, 2010, 59(6): 4211-4215. doi: 10.7498/aps.59.4211
    [18] 张飞鹏, 路清梅, 张久兴, 张忻. 双掺杂BaxAgyCa3-x-yCo4O9氧化物的织构与电输运性能. 物理学报, 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [19] 胡建民, 信江波, 吕 强, 王月媛, 荣剑英. (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x机械合金化粉体的制备及其冷压烧结样品的热电性能研究. 物理学报, 2006, 55(9): 4843-4848. doi: 10.7498/aps.55.4843
    [20] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制. 物理学报, 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
计量
  • 文章访问数:  3955
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-04-19
  • 上网日期:  2022-07-19
  • 刊出日期:  2022-08-05

/

返回文章
返回