搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi0.5Ba0.5FeO3 陶瓷的电性能及阻抗分析

袁昌来 刘心宇 黄静月 周昌荣 许积文

引用本文:
Citation:

Bi0.5Ba0.5FeO3 陶瓷的电性能及阻抗分析

袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文

Electrical properties and impedance analysis of Bi0.5Ba0.5FeO3 ceramic

Yuan Chang-Lai, Liu Xin-Yu, Huang Jing-Yue, Zhou Chang-Rong, Xu Ji-Wen
PDF
导出引用
  • 以传统的固相反应法制备了Bi0.5Ba0.5FeO3陶瓷,并采用X射线衍射仪、扫描电子显微镜、直流阻温测试仪和交流阻抗分析仪测试了Bi0.5Ba0.5FeO3陶瓷的微结构和电性能.分析结果表明:Bi0.5Ba0.5FeO3陶瓷具有立方钙钛矿结构,颗粒尺寸约1.0 μm;在16—280 ℃范围内,Bi0.5Ba0.5FeO3陶瓷表现出明显的负温度系数热敏效应,其热敏常数、活化能分别为6490 K及0.558 eV;介电温谱揭示,在280 ℃下Bi0.5Ba0.5FeO3陶瓷材料没有出现相变行为.对于交流阻抗谱,采用3个串联的RQ(R与Q为并联)等效部件来拟合分析,拟合结果表明拟合数据与实验数据高度匹配,且这3个等效部件分别代表晶界、晶粒和晶壳的贡献.3个部件中,晶粒对陶瓷电阻阻值的影响最大,晶壳贡献次之,晶界最小,且3个部件电阻值都显示出负温度系数效应.在25—115 ℃范围内,电学模量虚部峰频与阻抗虚部峰频始终不匹配,意味着Bi0.5Ba0.5FeO3陶瓷体内部一直表现出局域导电机理.
    Ba0.5Bi0.5FeO3 ceramic was fabricated by conventional solid-state reaction method. The microstructures and electrical properties were characterized by X-ray diffraction, scanning electron microscopy, direct current (DC) resistance-temperature measurement and alternative current (AC) impedance analysis. According to the analysis, Ba0.5Bi0.5FeO3 ceramic is a cubic perovskite-type compound, and its grain size is about 1.0 μm. In the measured temperature range of 16—280 ℃, Ba0.5Bi0.5FeO3 ceramic shows obvious negative temperature coefficient thermistor characteristic, and the thermistor constant and activation energy of the ceramic are 6490 K and 0.558 eV, respectively. The temperature dependence of dielectric constant reveals that below 280 ℃ no phase transition occurs. The AC impedance characteristic in the ceramic can appropriately be modeled in terms of an equivalent electrical circuit comprising of a series combination of three parallel RQ components in connection with the grain, grain shell and grain boundary effects. The fitting results are in good agreement with the experimental data. The components of grain, grain shell and grain boundary, showing NTC characteristic, have the order of resistive contribution of Rg>Rs>Rgb. In the temperature range 25—115 ℃, the significant mismatch between the peaks of parameters Z″(ω) (imaginary part of impedance) and M″(ω) (imaginary part of electric modulus) suggests a development of persistent localized conduction in Ba0.5Bi0.5FeO3 ceramic.
    • 基金项目: 广西信息材料重点实验室研究基金(批准号:0710908-07-Z)资助的课题.
    [1]

    Fischer P, Polomska M, Sosnowska I, Szymański M 1980 J. Phys. C 13 1931.

    [2]

    Smolenskii G A, Yudin V M, 1963 Sov. Phys. JETP 16 622

    [3]

    Smolenskii G, Isupov V, Agranovskaya A, Kranik N 1961 Sov. Phys. Solid State 2 2651.

    [4]

    Zhang H, Liu F M, Ding F, Zhong W W, Zhou C C 2010 Acta Phys. Sin. 59 2078 (in Chinese)[张 嬛、刘发民、丁 凡、钟文武、周传仓 2010 物理学报 59 2078]

    [5]

    Sun Y, Huang Z F, Fan H G, Ming X, Wang C Z, Chen G 2009 Acta Phys. Sin. 58 193 (in Chinese) [孙 源、黄祖飞、范厚刚、明 星、王春忠、陈 岗 2009 物理学报 58 193]

    [6]

    Das S R, Choudhary R N P, Bhattacharya P, Katiyar R S, Dutta P, Manivannan A, Seehra M S 2007 J. Appl. Phys. 101 034104

    [7]

    Bellakki M B, Manivannan V, Madhu C, Sundaresan A 2009 Mater. Chem. Phys.116 599

    [8]

    Sahu J R, Rao C N R 2007 Solid-State Sci. 9 950

    [9]

    Uniyal P, Yadav K L 2008 Mater. Lett. 62 2858

    [10]

    Luo B C, Zhou C C, Chen C L, Jin K X 2009 Acta Phys. Sin. 58 4563 (in Chinese) [罗炳成、周超超、陈长乐、金克新 2009 物理学报 58 4563]

    [11]

    Balamurugan K, Harish Kumar N, Santhos P N 2009 J. Appl. Phys. 105 07D909

    [12]

    Yuan C L, Liu X Y, Ma J F, Zhou C R 2010 Acta Phys. Sin. 59 321 (in Chinese) [袁昌来、刘心宇、马家峰、周昌荣 2010 物理学报 59 321]

    [13]

    Fau P, Bonino J P, Demai J J, Rousset J 1993 Appl. Surf. Sci. 65—66 319

    [14]

    Macklen E D 1979 Thermistors (Ayr, Scotland:Electrochemical Publications Ltd.) p33

    [15]

    Larson E G, Arnott R J, Wikham D G 1962 J. Phys. Chem. Solid 23 1771

    [16]

    Cao W, Gerhardt R 1990 Solid State Ionics 42 213

    [17]

    Gerhardt R 1994 J. Phys. Chem. Solids 55 1491

  • [1]

    Fischer P, Polomska M, Sosnowska I, Szymański M 1980 J. Phys. C 13 1931.

    [2]

    Smolenskii G A, Yudin V M, 1963 Sov. Phys. JETP 16 622

    [3]

    Smolenskii G, Isupov V, Agranovskaya A, Kranik N 1961 Sov. Phys. Solid State 2 2651.

    [4]

    Zhang H, Liu F M, Ding F, Zhong W W, Zhou C C 2010 Acta Phys. Sin. 59 2078 (in Chinese)[张 嬛、刘发民、丁 凡、钟文武、周传仓 2010 物理学报 59 2078]

    [5]

    Sun Y, Huang Z F, Fan H G, Ming X, Wang C Z, Chen G 2009 Acta Phys. Sin. 58 193 (in Chinese) [孙 源、黄祖飞、范厚刚、明 星、王春忠、陈 岗 2009 物理学报 58 193]

    [6]

    Das S R, Choudhary R N P, Bhattacharya P, Katiyar R S, Dutta P, Manivannan A, Seehra M S 2007 J. Appl. Phys. 101 034104

    [7]

    Bellakki M B, Manivannan V, Madhu C, Sundaresan A 2009 Mater. Chem. Phys.116 599

    [8]

    Sahu J R, Rao C N R 2007 Solid-State Sci. 9 950

    [9]

    Uniyal P, Yadav K L 2008 Mater. Lett. 62 2858

    [10]

    Luo B C, Zhou C C, Chen C L, Jin K X 2009 Acta Phys. Sin. 58 4563 (in Chinese) [罗炳成、周超超、陈长乐、金克新 2009 物理学报 58 4563]

    [11]

    Balamurugan K, Harish Kumar N, Santhos P N 2009 J. Appl. Phys. 105 07D909

    [12]

    Yuan C L, Liu X Y, Ma J F, Zhou C R 2010 Acta Phys. Sin. 59 321 (in Chinese) [袁昌来、刘心宇、马家峰、周昌荣 2010 物理学报 59 321]

    [13]

    Fau P, Bonino J P, Demai J J, Rousset J 1993 Appl. Surf. Sci. 65—66 319

    [14]

    Macklen E D 1979 Thermistors (Ayr, Scotland:Electrochemical Publications Ltd.) p33

    [15]

    Larson E G, Arnott R J, Wikham D G 1962 J. Phys. Chem. Solid 23 1771

    [16]

    Cao W, Gerhardt R 1990 Solid State Ionics 42 213

    [17]

    Gerhardt R 1994 J. Phys. Chem. Solids 55 1491

  • [1] 马孟宇, 蔚翠, 何泽召, 郭建超, 刘庆彬, 冯志红. 氢终端金刚石薄膜生长及其表面结构. 物理学报, 2024, 73(8): 088101. doi: 10.7498/aps.73.20240053
    [2] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [4] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为. 物理学报, 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [5] 赵小强, 赵学童, 许超, 李巍巍, 任路路, 廖瑞金, 李建英. ZnO-Bi2O3系压敏陶瓷缺陷弛豫特性的研究进展. 物理学报, 2017, 66(2): 027701. doi: 10.7498/aps.66.027701
    [6] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响. 物理学报, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [7] 冷森林, 石维, 龙禹, 李国荣. 高温无铅BaTiO3-(Bi1/2Na1/2)TiO3正温度系数电阻陶瓷阻抗和介电谱分析. 物理学报, 2014, 63(4): 047102. doi: 10.7498/aps.63.047102
    [8] 袁昌来, 周秀娟, 轩敏杰, 许积文, 杨云, 刘心宇. K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4复合陶瓷的制备与磁电性能研究. 物理学报, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [9] 张艳, 王增梅, 陈云飞, 郭新立, 孙伟, 袁国亮, 殷江, 刘治国. 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3压电薄膜的摩擦、磨损性能. 物理学报, 2013, 62(6): 066802. doi: 10.7498/aps.62.066802
    [10] 向军, 郭银涛, 周广振, 褚艳秋. 碱土和过渡金属掺杂NdAlO3导电陶瓷的制备、结构与电性能研究. 物理学报, 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [11] 向军, 郭银涛, 褚艳秋, 周广振. 双掺杂的Sm0.9Sr0.1Al1-xCoxO3-δ钙钛矿结构导电陶瓷的制备及其电性能. 物理学报, 2011, 60(2): 027203. doi: 10.7498/aps.60.027203
    [12] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [13] 胡星, 王伟, 毛翔宇, 陈小兵. Co掺杂Bi5Ti3FeO15多铁陶瓷的磁电性能. 物理学报, 2010, 59(11): 8160-8166. doi: 10.7498/aps.59.8160
    [14] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究. 物理学报, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [15] 袁昌来, 刘心宇, 杨云, 许积文, 谷岩. BaFe0.4Sn0.6O3/BaBiO3负温度系数复合热敏陶瓷阻抗分析. 物理学报, 2010, 59(10): 7396-7403. doi: 10.7498/aps.59.7396
    [16] 宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平. (1-x)(K0.5Na0.5)NbO3-xSrTiO3陶瓷的弛豫铁电性能. 物理学报, 2009, 58(7): 4980-4986. doi: 10.7498/aps.58.4980
    [17] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [18] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [19] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
    [20] 郭常霖, 吴毓琴, 王天宝. K0.5Bi0.5TiO3—Na0.5Bi0.5TiO3系统铁电陶瓷相界的X射线研究. 物理学报, 1982, 31(8): 1119-1122. doi: 10.7498/aps.31.1119
计量
  • 文章访问数:  8082
  • PDF下载量:  881
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-16
  • 修回日期:  2010-05-22
  • 刊出日期:  2011-01-05

/

返回文章
返回