搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为

杜金花 李雍 孙宁宁 赵烨 郝喜红

引用本文:
Citation:

(1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为

杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红

Dielectric, ferroelectric and high energy storage behavior of (1–x)K0.5Na0.5NbO3xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics

Du Jin-Hua, Li Yong, Sun Ning-Ning, Zhao Ye, Hao Xi-Hong
PDF
HTML
导出引用
  • 利用传统固相法制备了(1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3 (简写: (1–x)KNN-xBMT, x = 0.05, 0.10, 0.15, 0.20)无铅弛豫铁电陶瓷, 并对其相结构、微观形貌、介电特性与储能行为进行了系统的研究. 研究结果表明, 随着BMT含量的增加, (1–x)KNN-xBMT陶瓷由正常铁电体逐渐转变为弛豫铁电体, 表现出强烈的弥散相变特征, 其最大极化强度Pmax随之逐渐降低. 当x = 0.15时, 陶瓷具有最大的击穿电场, 为275 kV·cm–1. 采用间接方式对(1–x)KNN-xBMT陶瓷的储能性能进行计算, 发现当BMT的含量为x = 0.15时, 可获得最佳的储能性能: 当场强为275 kV·cm–1时, 可释放储能密度Wrec为2.25 J·cm–3, 储能效率η高达84%. 鉴于实际应用的需求, 对各组分陶瓷进行直接测试, 结果表明随掺杂量的增加, 储能密度Wdis呈现先增大后减小的变化趋势, 当x = 0.15时, 储能密度为1.54 J·cm–3, 放电时间仅为88 ns. 另外, 该材料在1—50 Hz范围内具有良好的频率稳定性, 在25—125 ℃范围内具有良好的温度稳定性, 储能密度的变化量低于8%. 该研究表明KNN-BMT陶瓷在环境友好高储能密度电容器领域具有广阔的应用前景.
    Lead-free dielectric ceramics with high energy-storage density and efficiency are ideal energy materials for sustainable development of the enery resource. In this paper, (1–x)K0.5Na0.5NbO3xBi(Mg0.5Ti0.5)O3 ((1–x)KNN-xBMT, x = 0.05, 0.10, 0.15, 0.20) lead-free relaxor ferroelectric ceramics are prepared by the traditional solid-state method. The effects of BMT on the phase structure, microstructure, dielectric properties and energy storage behavior of KNN based ceramics are studied. With the increase of BMT content, the crystal structures of (1–x)KNN-xBMT ceramics gradually change from orthorhombic to pseudo-cubic phase, and transform into cubic phase finally. The addition of BMT can suppress grain growth of the ceramics, resulting in the average grain size decreasing from 850 to 195 nm when x increases from 0.05 to 0.20. Dielectric properties exhibit that the Curie temperature decreases with BMT content increasing, and dielectric peak at Curie temperature is broadened due to the addition of BMT. In addition, ferroelectric properties demonstrate that the addition of BMT reduces the remnant polarization (Pr) and coercive field (Ec) of the ceramics. The results indicate that (1–x)KNN-xBMT ceramics transform from ferroelectric to relaxor ferroelectric phase. Based on the calculation of hysteresis loop, the best energy storage performance is obtained at x = 0.15, of which the recoverable energy storage density (Wrec) and the energy storage efficiency (η) are 2.25 J·cm–3 and 84% at its dielectric breakdown strength of 275 kV·cm–1. Meanwhile, the ceramic with x = 0.15 exhibits good stability in a frequency range of 1–50 Hz, with an energy density variation of less than 5%, and temperature stability in a range of 25–125 ℃ with change of less than 8%. Moreover, based on direct measurement, the energy storage density (Wdis) of the ceramic with x = 0.15 is 1.54 J·cm–3, and the discharge time is only 88 ns. The research shows that (1–x)KNN-xBMT ceramics have a wide application prospect in the field of environmentally friendly capacitors with high energy storage density.
      通信作者: 郝喜红, xhhao@imust.cn
    • 基金项目: 国家级-国家自然科学基金(51702169)
      Corresponding author: Hao Xi-Hong, xhhao@imust.cn
    [1]

    Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mater. Sci. 57 660Google Scholar

    [2]

    Yao K, Chen S T, Rahimabady M, Mirshekarloo M S, Yu S H, Tay F E H, Sritharan T, Lu L 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1968Google Scholar

    [3]

    Cao Y, Irwin P C, Younsi K 2004 IEEE Trans. Dielectr. Electr. Insul. 11 797Google Scholar

    [4]

    Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2014 Adv. Energy Mater. 4 1400610Google Scholar

    [5]

    Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [6]

    Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q 2013 Nat. Commun. 26 1Google Scholar

    [7]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T, Wang Q 2015 Nature 523 576Google Scholar

    [8]

    Xu B, Íñiguez J, Bellaiche L 2017 Nat. Commun. 8 15682Google Scholar

    [9]

    Wang D W, Fan Z M, Zhou D, Khesro A, Murakami S, Feteira A, Zhao Q L, Tan X L, Reaney L M 2018 J. Mater. Chem. A 6 4133Google Scholar

    [10]

    Wu J Y, Mahajan A, Riekehr L, Zhang H F, Yang B, Meng N, Zhang Z, Yan H X 2018 Nano Energy 50 723Google Scholar

    [11]

    Parizi S S, Mellinger A, Caruntu G 2014 ACS Appl. Mater. Interfaces 6 17506Google Scholar

    [12]

    Liu X H, Li Y, Hao X H 2019 J. Mater. Chem. A 7 11858Google Scholar

    [13]

    Shen B Z, Li Y, Hao X H 2019 ACS Appl. Mater. Interfaces 11 34117Google Scholar

    [14]

    Chen L M, Sun N N, Li Y, Zhang Q W, Zhang L W, Hao X H 2018 J. Am. Ceram. Soc. 101 2313Google Scholar

    [15]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [16]

    He C J, An Y, Deng C G, Gu X R, Wang J M, Wu T, Liu Y W, Lu Y G 2019 Mod. Phys. Lett. B 33 1950323Google Scholar

    [17]

    Yao Y, Li Y, Sun N N, Du J H, Li X W, Zhang L W, Zhang Q W, Hao X H 2018 Ceram. Int. 44 5961Google Scholar

    [18]

    An Y, He C J, Deng C G, Chen Z Y, Chen H B, Wu T, Lu Y G, Gu X R, Wang J M, Liu Y W, Li Z Q 2020 Ceram. Int. 46 4664Google Scholar

    [19]

    Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C 6 10693Google Scholar

    [20]

    Hu Q Y, Jin L, Wang T, Li C C, Xing Z, Wei X Y 2015 J. Alloys Compd. 640 416Google Scholar

    [21]

    Wang T, Jin L, Li C C, Hu Q Y, Wei X Y 2015 J. Am. Ceram. Soc. 98 559Google Scholar

    [22]

    Shen Z B, Wang X H, LuoB C, Li L T 2015 J. Mater. Chem. A 3 18146Google Scholar

    [23]

    Zhou M X, Liang R H, Zhou Z Y, Dong X L 2018 J. Mater. Chem. A 6 17896Google Scholar

    [24]

    Zheng D G, Zuo R Z, Zhang D S, Li Y 2015 J. Am. Ceram. Soc. 98 2692Google Scholar

    [25]

    Cao W P, Li W L, Dai X F, Zhang T D, Sheng J, Hou Y F, Fei W D 2016 J. Eur. Ceram. Soc. 36 593Google Scholar

    [26]

    Tian Y, Jin L, Hu Q Y, Yu K, Zhuang Y Y, Viola G, Abrahams I, Xu Z, Wei X, Yan H X 2019 J. Mater. Chem. A 7 834Google Scholar

    [27]

    Tian Y, Jin L, Zhang H F, Xu Z, Wei X Y, Viola G, Abrahams I, Yan H X 2017 J. Mater. Chem. A 5 17525Google Scholar

    [28]

    Zhao L, Liu Q, Gao J, Zhang S J, Li J F 2017 Adv. Mater. 29 1701824Google Scholar

    [29]

    Qiao X S, Zhang X S, Wu D, Chao X L, Yang Z P 2018 J. Adv. Dielectr. 8 1830006Google Scholar

    [30]

    Shao T Q, Du H L, Ma H, Qu S B, Wang J, Wang J F, Wei X Y, Xu Z 2017 J. Mater. Chem. A 5 554Google Scholar

    [31]

    Qu B Y, Du H L, Yang Z T 2016 J. Mater. Chem. C 4 1795Google Scholar

    [32]

    Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar

    [33]

    Yang Z T, Gao F, Du H L, Jin L, Yan L L, Hu Q Y, Yu Y, Qu S B, Wei X Y, Xu Z, Wang Y J 2019 Nano Energy 58 768Google Scholar

    [34]

    Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849Google Scholar

    [35]

    Malic B, Koruza J, Hrescak J, Bernard J, Wang K, Fisher J, Bencan A 2015 Materials 8 8117Google Scholar

    [36]

    Hao X H, Wang Y, Zhang L, Zhang L W 2013 Appl. Phys. Lett. 102 163903Google Scholar

    [37]

    杜红亮, 杨泽田, 高峰, 靳立, 程花蕾, 屈少波 2018 无机材料学报 33 1046Google Scholar

    Du H L, Yang Z T, Gao F, Jin L, Cheng H L, Qu S B 2018 J. Inorg. Mater. 33 1046Google Scholar

    [38]

    Chen L M, Hao X H, Zhang Q W, An S L 2016 J. Mater. Sci.- Mater Electron. 27 4534Google Scholar

    [39]

    Chen X F, Zhang H L, Cao F, Wang G S 2009 J. Appl. Phys. 106 034105Google Scholar

    [40]

    Zhang H, Chen X, Cao F, Wang G, Dong X, Hu Z, Du T 2010 J. Am. Ceram. Soc. 93 4015Google Scholar

    [41]

    Ahn C W, Amarsanaa G, Won S S, Chae S A, Lee D S, Kim I W 2015 ACS Appl. Mater. Interfaces 7 26381Google Scholar

    [42]

    Zhang Q M, Li C, Liu H W, Tang Q 2015 J. Am. Ceram. Soc. 98 366Google Scholar

    [43]

    Xu R, Xu Z, Feng Y J, He H L, Tian J J, Huang D 2016 J. Am. Ceram. Soc. 99 2984Google Scholar

    [44]

    李华梅, 李东杰, 陈学锋, 曹菲, 董显林 2008 物理学报 57 7298Google Scholar

    Li H M, Li D J, Chen X F, Cao F, Dong X L 2008 Acta Phys. Sin. 57 7298Google Scholar

    [45]

    Xu R, Xu Z, Feng Y J, Wei X Y, Tian J J, Huang D 2016 J. Appl. Phys. 119 224103Google Scholar

    [46]

    Zhu M K, Liu L Y, Hou Y D, Wang H, Yan H 2007 J. Am. Ceram. Soc. 90 120Google Scholar

    [47]

    Qu B Y, Du H L, Yang Z T, Liu Q H 2017 J. Am. Ceram. Soc. 100 1517Google Scholar

    [48]

    Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [49]

    陈威, 曹万强 2012 物理学报 61 097701Google Scholar

    Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701Google Scholar

    [50]

    Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar

    [51]

    Li J L, Li F, Xu Z, Zhang S J 2018 Adv. Mater. 30 1802155Google Scholar

    [52]

    Xu R, Tian J J, Zhu Q S, Zhao T, Feng Y J, Wei X Y, Xu Z 2017 J. Am. Ceram. Soc. 100 3618Google Scholar

  • 图 1  通过组分掺杂减小晶粒尺寸获得铌酸钾钠陶瓷高储能密度的示意图

    Fig. 1.  Schematic diagram showing the increase of Wrec through decreasing the grain size by doping BMT in KNN ceramics.

    图 2  直接测试系统的电路示意图

    Fig. 2.  Circuit diagram of direct test system.

    图 3  (1–x)KNN-xBMT 陶瓷的XRD图

    Fig. 3.  XRD patterns of (1–x)KNN-xBMT ceramics.

    图 4  (1–x)KNN-xBMT 陶瓷的表面形貌SEM图, 插图为含有平均粒径的粒径分布图 (a) x = 0.05; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20

    Fig. 4.  SEM images of the (1–x)KNN-xBMT ceramics with their grain size distribution and average grain size inserted: (a) x = 0.05; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20.

    图 5  (a) (1 – x)KNN-xBMT陶瓷在–150 ℃至300 ℃以及KNN陶瓷在25 ℃至500 ℃的介电常数随温度的变化; (b) ln(1/εr–1/εm) 随ln(TTm)的变化

    Fig. 5.  (a) Dielectric constant as a function of temperature in a temperature range of –150 ℃ to 300 ℃ for (1 – x)KNN-xBMT ceramics and 25 ℃ to 500 ℃ for pure KNN ceramics; (b) plots of ln(1/εr–1/εm) versus ln(TTm) of the (1–x)KNN-xBMT ceramics.

    图 6  (1–x)KNN-xBMT 陶瓷在60 kV·cm–1电场下P-E曲线和电流回线(I-E) (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.15; (e) x = 0.20

    Fig. 6.  P-E loop and I-E curves under 60 kV·cm–1 electric field of the (1–x)KNN-xBMT ceramics: (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.15; (e) x = 0.20.

    图 7  (1–x)KNN-xBMT陶瓷在击穿电场下的(a) P-E图以及(b)储能密度和储能效率; (1–x)KNN-xBMT陶瓷在185 kV·cm-1电场下的(c) P-E图以及(d)储能密度和储能效率

    Fig. 7.  (a) P-E loops, (b) Wrec and η of (1–x)KNN-xBMT ceramics at the maximum applied electric fields; (c) P-E loops, (d) Wrec and η of (1–x)KNN-xBMT ceramics under 200 kV·cm–1 electric fields.

    图 8  0.85KNN-0.15BMT陶瓷在不同电场下的(a) P-E图以及(b)储能密度和储能效率; 在不同频率下的(c) P-E图和(d)储能密度和储能效率; 在不同温度下的(e) P-E图和(f)储能密度和储能效率

    Fig. 8.  (a) P-E loops and (b) Wrec and η under different electric fields, (c) P-E loops and (d) Wrec and η at different frequencies, (e) P-E loops and (f) Wrec and η at different temperatures of 0.85KNN-0.15BMT ceramics.

    图 9  (1–x)KNN-xBMT陶瓷在最大击穿电场下直接测试的(a)放电电流随时间的变化, (b)放电储能密度和放电速率t90以及(c) WdisWrec比较图; 0.85KNN-0.15BMT陶瓷在不同电场下直接测试的(d)放电电流随时间的变化, (e) 放电储能密度Wdis以及(f) WdisWrec比较图

    Fig. 9.  (a) Pulsed discharge current curves, (b) discharge energy density Wdis and discharge time t90, and (c) comparative figures of Wdis and Wrec under breakdown electric field of the (1–x)KNN-xBMT ceramics; (d) pulsed discharge current curves, (e) discharge energy density Wdis, and (f) the comparative figures of Wdis and Wrec under different electric fields of the 0.85KNN-0.15BMT ceramic

    表 1  0.85 KNN-0.15 BMT陶瓷与其他部分无铅陶瓷储能性能的比较

    Table 1.  Comparison of energy storage properties of 0.85 KNN-0.15 BMT ceramics and other lead-free ceramics.

    Material systermWrec/J·cm–3η/%BDS /kV·cm–1Wdis/J·cm–3t90/nsReference
    0.88BT-0.12BMT1.8188224[20]
    0.85BT-0.15BY0.50100[22]
    0.61BF-0.33BT-0.06BMN1.5675125[24]
    0.7BNT-0.3ST + 0.05MnO20.9674.695[25]
    0.8KNN-0.2SSN2.0281.4295[31]
    0.85KNN-0.15ST4.0352400[32]
    0.85KNN-0.15BMT2.25842751.5488This work
    下载: 导出CSV
  • [1]

    Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mater. Sci. 57 660Google Scholar

    [2]

    Yao K, Chen S T, Rahimabady M, Mirshekarloo M S, Yu S H, Tay F E H, Sritharan T, Lu L 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1968Google Scholar

    [3]

    Cao Y, Irwin P C, Younsi K 2004 IEEE Trans. Dielectr. Electr. Insul. 11 797Google Scholar

    [4]

    Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2014 Adv. Energy Mater. 4 1400610Google Scholar

    [5]

    Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [6]

    Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q 2013 Nat. Commun. 26 1Google Scholar

    [7]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T, Wang Q 2015 Nature 523 576Google Scholar

    [8]

    Xu B, Íñiguez J, Bellaiche L 2017 Nat. Commun. 8 15682Google Scholar

    [9]

    Wang D W, Fan Z M, Zhou D, Khesro A, Murakami S, Feteira A, Zhao Q L, Tan X L, Reaney L M 2018 J. Mater. Chem. A 6 4133Google Scholar

    [10]

    Wu J Y, Mahajan A, Riekehr L, Zhang H F, Yang B, Meng N, Zhang Z, Yan H X 2018 Nano Energy 50 723Google Scholar

    [11]

    Parizi S S, Mellinger A, Caruntu G 2014 ACS Appl. Mater. Interfaces 6 17506Google Scholar

    [12]

    Liu X H, Li Y, Hao X H 2019 J. Mater. Chem. A 7 11858Google Scholar

    [13]

    Shen B Z, Li Y, Hao X H 2019 ACS Appl. Mater. Interfaces 11 34117Google Scholar

    [14]

    Chen L M, Sun N N, Li Y, Zhang Q W, Zhang L W, Hao X H 2018 J. Am. Ceram. Soc. 101 2313Google Scholar

    [15]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [16]

    He C J, An Y, Deng C G, Gu X R, Wang J M, Wu T, Liu Y W, Lu Y G 2019 Mod. Phys. Lett. B 33 1950323Google Scholar

    [17]

    Yao Y, Li Y, Sun N N, Du J H, Li X W, Zhang L W, Zhang Q W, Hao X H 2018 Ceram. Int. 44 5961Google Scholar

    [18]

    An Y, He C J, Deng C G, Chen Z Y, Chen H B, Wu T, Lu Y G, Gu X R, Wang J M, Liu Y W, Li Z Q 2020 Ceram. Int. 46 4664Google Scholar

    [19]

    Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C 6 10693Google Scholar

    [20]

    Hu Q Y, Jin L, Wang T, Li C C, Xing Z, Wei X Y 2015 J. Alloys Compd. 640 416Google Scholar

    [21]

    Wang T, Jin L, Li C C, Hu Q Y, Wei X Y 2015 J. Am. Ceram. Soc. 98 559Google Scholar

    [22]

    Shen Z B, Wang X H, LuoB C, Li L T 2015 J. Mater. Chem. A 3 18146Google Scholar

    [23]

    Zhou M X, Liang R H, Zhou Z Y, Dong X L 2018 J. Mater. Chem. A 6 17896Google Scholar

    [24]

    Zheng D G, Zuo R Z, Zhang D S, Li Y 2015 J. Am. Ceram. Soc. 98 2692Google Scholar

    [25]

    Cao W P, Li W L, Dai X F, Zhang T D, Sheng J, Hou Y F, Fei W D 2016 J. Eur. Ceram. Soc. 36 593Google Scholar

    [26]

    Tian Y, Jin L, Hu Q Y, Yu K, Zhuang Y Y, Viola G, Abrahams I, Xu Z, Wei X, Yan H X 2019 J. Mater. Chem. A 7 834Google Scholar

    [27]

    Tian Y, Jin L, Zhang H F, Xu Z, Wei X Y, Viola G, Abrahams I, Yan H X 2017 J. Mater. Chem. A 5 17525Google Scholar

    [28]

    Zhao L, Liu Q, Gao J, Zhang S J, Li J F 2017 Adv. Mater. 29 1701824Google Scholar

    [29]

    Qiao X S, Zhang X S, Wu D, Chao X L, Yang Z P 2018 J. Adv. Dielectr. 8 1830006Google Scholar

    [30]

    Shao T Q, Du H L, Ma H, Qu S B, Wang J, Wang J F, Wei X Y, Xu Z 2017 J. Mater. Chem. A 5 554Google Scholar

    [31]

    Qu B Y, Du H L, Yang Z T 2016 J. Mater. Chem. C 4 1795Google Scholar

    [32]

    Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar

    [33]

    Yang Z T, Gao F, Du H L, Jin L, Yan L L, Hu Q Y, Yu Y, Qu S B, Wei X Y, Xu Z, Wang Y J 2019 Nano Energy 58 768Google Scholar

    [34]

    Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849Google Scholar

    [35]

    Malic B, Koruza J, Hrescak J, Bernard J, Wang K, Fisher J, Bencan A 2015 Materials 8 8117Google Scholar

    [36]

    Hao X H, Wang Y, Zhang L, Zhang L W 2013 Appl. Phys. Lett. 102 163903Google Scholar

    [37]

    杜红亮, 杨泽田, 高峰, 靳立, 程花蕾, 屈少波 2018 无机材料学报 33 1046Google Scholar

    Du H L, Yang Z T, Gao F, Jin L, Cheng H L, Qu S B 2018 J. Inorg. Mater. 33 1046Google Scholar

    [38]

    Chen L M, Hao X H, Zhang Q W, An S L 2016 J. Mater. Sci.- Mater Electron. 27 4534Google Scholar

    [39]

    Chen X F, Zhang H L, Cao F, Wang G S 2009 J. Appl. Phys. 106 034105Google Scholar

    [40]

    Zhang H, Chen X, Cao F, Wang G, Dong X, Hu Z, Du T 2010 J. Am. Ceram. Soc. 93 4015Google Scholar

    [41]

    Ahn C W, Amarsanaa G, Won S S, Chae S A, Lee D S, Kim I W 2015 ACS Appl. Mater. Interfaces 7 26381Google Scholar

    [42]

    Zhang Q M, Li C, Liu H W, Tang Q 2015 J. Am. Ceram. Soc. 98 366Google Scholar

    [43]

    Xu R, Xu Z, Feng Y J, He H L, Tian J J, Huang D 2016 J. Am. Ceram. Soc. 99 2984Google Scholar

    [44]

    李华梅, 李东杰, 陈学锋, 曹菲, 董显林 2008 物理学报 57 7298Google Scholar

    Li H M, Li D J, Chen X F, Cao F, Dong X L 2008 Acta Phys. Sin. 57 7298Google Scholar

    [45]

    Xu R, Xu Z, Feng Y J, Wei X Y, Tian J J, Huang D 2016 J. Appl. Phys. 119 224103Google Scholar

    [46]

    Zhu M K, Liu L Y, Hou Y D, Wang H, Yan H 2007 J. Am. Ceram. Soc. 90 120Google Scholar

    [47]

    Qu B Y, Du H L, Yang Z T, Liu Q H 2017 J. Am. Ceram. Soc. 100 1517Google Scholar

    [48]

    Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [49]

    陈威, 曹万强 2012 物理学报 61 097701Google Scholar

    Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701Google Scholar

    [50]

    Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar

    [51]

    Li J L, Li F, Xu Z, Zhang S J 2018 Adv. Mater. 30 1802155Google Scholar

    [52]

    Xu R, Tian J J, Zhu Q S, Zhao T, Feng Y J, Wei X Y, Xu Z 2017 J. Am. Ceram. Soc. 100 3618Google Scholar

  • [1] 郭云凤, 王俊贤, 王泽星, 李家茂, 陈立明. (Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]陶瓷结构与电学性能的影响. 物理学报, 2025, 74(1): 017702. doi: 10.7498/aps.74.20240833
    [2] 陈小明, 李国荣. BaTiO3基无铅陶瓷大电致伸缩系数. 物理学报, 2022, 71(16): 167701. doi: 10.7498/aps.71.20220451
    [3] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应. 物理学报, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [4] 陈小明, 王明焱, 唐木智明, 李国荣. CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性. 物理学报, 2021, 70(19): 197701. doi: 10.7498/aps.70.20210440
    [5] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [6] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [7] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [8] 冷森林, 石维, 龙禹, 李国荣. 高温无铅BaTiO3-(Bi1/2Na1/2)TiO3正温度系数电阻陶瓷阻抗和介电谱分析. 物理学报, 2014, 63(4): 047102. doi: 10.7498/aps.63.047102
    [9] 刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛. 四方和正交以及单斜相K0.5Na0.5NbO3的结构稳定性和电子结构的第一性原理研究. 物理学报, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [10] 袁昌来, 周秀娟, 轩敏杰, 许积文, 杨云, 刘心宇. K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4复合陶瓷的制备与磁电性能研究. 物理学报, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [11] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能. 物理学报, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [12] 陈威, 曹万强. 弛豫铁电体弥散相变的玻璃化特性研究. 物理学报, 2012, 61(9): 097701. doi: 10.7498/aps.61.097701
    [13] 尚玉黎, 舒明飞, 陈威, 曹万强. 钛酸钡基施主掺杂弛豫铁电体介电弥散的唯象分析. 物理学报, 2012, 61(19): 197701. doi: 10.7498/aps.61.197701
    [14] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生. (K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究. 物理学报, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [15] 宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平. (1-x)(K0.5Na0.5)NbO3-xSrTiO3陶瓷的弛豫铁电性能. 物理学报, 2009, 58(7): 4980-4986. doi: 10.7498/aps.58.4980
    [16] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [17] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷. 物理学报, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [18] 朱 骏, 卢网平, 刘秋朝, 毛翔宇, 惠 荣, 陈小兵. La掺杂SrBi4Ti4O15铁电材料性能研究. 物理学报, 2003, 52(6): 1524-1528. doi: 10.7498/aps.52.1524
    [19] 朱 骏, 卢网平, 刘秋朝, 毛翔宇, 惠 荣, 陈小兵. (Bi, La)4Ti3O12-Sr(Bi, La)4Ti4O15共生结构铁电材料性能研究. 物理学报, 2003, 52(10): 2627-2631. doi: 10.7498/aps.52.2627
    [20] 郭常霖, 吴毓琴, 王天宝. K0.5Bi0.5TiO3—Na0.5Bi0.5TiO3系统铁电陶瓷相界的X射线研究. 物理学报, 1982, 31(8): 1119-1122. doi: 10.7498/aps.31.1119
计量
  • 文章访问数:  9603
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-12
  • 修回日期:  2020-03-29
  • 刊出日期:  2020-06-20

/

返回文章
返回