-
利用传统固相法制备了(1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3 (简写: (1–x)KNN-xBMT, x = 0.05, 0.10, 0.15, 0.20)无铅弛豫铁电陶瓷, 并对其相结构、微观形貌、介电特性与储能行为进行了系统的研究. 研究结果表明, 随着BMT含量的增加, (1–x)KNN-xBMT陶瓷由正常铁电体逐渐转变为弛豫铁电体, 表现出强烈的弥散相变特征, 其最大极化强度Pmax随之逐渐降低. 当x = 0.15时, 陶瓷具有最大的击穿电场, 为275 kV·cm–1. 采用间接方式对(1–x)KNN-xBMT陶瓷的储能性能进行计算, 发现当BMT的含量为x = 0.15时, 可获得最佳的储能性能: 当场强为275 kV·cm–1时, 可释放储能密度Wrec为2.25 J·cm–3, 储能效率η高达84%. 鉴于实际应用的需求, 对各组分陶瓷进行直接测试, 结果表明随掺杂量的增加, 储能密度Wdis呈现先增大后减小的变化趋势, 当x = 0.15时, 储能密度为1.54 J·cm–3, 放电时间仅为88 ns. 另外, 该材料在1—50 Hz范围内具有良好的频率稳定性, 在25—125 ℃范围内具有良好的温度稳定性, 储能密度的变化量低于8%. 该研究表明KNN-BMT陶瓷在环境友好高储能密度电容器领域具有广阔的应用前景.
-
关键词:
- K0.5Na0.5NbO3基 /
- 储能性能 /
- 无铅 /
- 弛豫铁电 /
- 直接测试
Lead-free dielectric ceramics with high energy-storage density and efficiency are ideal energy materials for sustainable development of the enery resource. In this paper, (1–x)K0.5Na0.5NbO3–xBi(Mg0.5Ti0.5)O3 ((1–x)KNN-xBMT, x = 0.05, 0.10, 0.15, 0.20) lead-free relaxor ferroelectric ceramics are prepared by the traditional solid-state method. The effects of BMT on the phase structure, microstructure, dielectric properties and energy storage behavior of KNN based ceramics are studied. With the increase of BMT content, the crystal structures of (1–x)KNN-xBMT ceramics gradually change from orthorhombic to pseudo-cubic phase, and transform into cubic phase finally. The addition of BMT can suppress grain growth of the ceramics, resulting in the average grain size decreasing from 850 to 195 nm when x increases from 0.05 to 0.20. Dielectric properties exhibit that the Curie temperature decreases with BMT content increasing, and dielectric peak at Curie temperature is broadened due to the addition of BMT. In addition, ferroelectric properties demonstrate that the addition of BMT reduces the remnant polarization (Pr) and coercive field (Ec) of the ceramics. The results indicate that (1–x)KNN-xBMT ceramics transform from ferroelectric to relaxor ferroelectric phase. Based on the calculation of hysteresis loop, the best energy storage performance is obtained at x = 0.15, of which the recoverable energy storage density (Wrec) and the energy storage efficiency (η) are 2.25 J·cm–3 and 84% at its dielectric breakdown strength of 275 kV·cm–1. Meanwhile, the ceramic with x = 0.15 exhibits good stability in a frequency range of 1–50 Hz, with an energy density variation of less than 5%, and temperature stability in a range of 25–125 ℃ with change of less than 8%. Moreover, based on direct measurement, the energy storage density (Wdis) of the ceramic with x = 0.15 is 1.54 J·cm–3, and the discharge time is only 88 ns. The research shows that (1–x)KNN-xBMT ceramics have a wide application prospect in the field of environmentally friendly capacitors with high energy storage density.-
Keywords:
- K0.5Na0.5NbO3-base /
- energy storage /
- lead-free /
- relaxor ferroelectric /
- direct measurement
[1] Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mater. Sci. 57 660Google Scholar
[2] Yao K, Chen S T, Rahimabady M, Mirshekarloo M S, Yu S H, Tay F E H, Sritharan T, Lu L 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1968Google Scholar
[3] Cao Y, Irwin P C, Younsi K 2004 IEEE Trans. Dielectr. Electr. Insul. 11 797Google Scholar
[4] Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2014 Adv. Energy Mater. 4 1400610Google Scholar
[5] Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar
[6] Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q 2013 Nat. Commun. 26 1Google Scholar
[7] Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T, Wang Q 2015 Nature 523 576Google Scholar
[8] Xu B, Íñiguez J, Bellaiche L 2017 Nat. Commun. 8 15682Google Scholar
[9] Wang D W, Fan Z M, Zhou D, Khesro A, Murakami S, Feteira A, Zhao Q L, Tan X L, Reaney L M 2018 J. Mater. Chem. A 6 4133Google Scholar
[10] Wu J Y, Mahajan A, Riekehr L, Zhang H F, Yang B, Meng N, Zhang Z, Yan H X 2018 Nano Energy 50 723Google Scholar
[11] Parizi S S, Mellinger A, Caruntu G 2014 ACS Appl. Mater. Interfaces 6 17506Google Scholar
[12] Liu X H, Li Y, Hao X H 2019 J. Mater. Chem. A 7 11858Google Scholar
[13] Shen B Z, Li Y, Hao X H 2019 ACS Appl. Mater. Interfaces 11 34117Google Scholar
[14] Chen L M, Sun N N, Li Y, Zhang Q W, Zhang L W, Hao X H 2018 J. Am. Ceram. Soc. 101 2313Google Scholar
[15] Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar
[16] He C J, An Y, Deng C G, Gu X R, Wang J M, Wu T, Liu Y W, Lu Y G 2019 Mod. Phys. Lett. B 33 1950323Google Scholar
[17] Yao Y, Li Y, Sun N N, Du J H, Li X W, Zhang L W, Zhang Q W, Hao X H 2018 Ceram. Int. 44 5961Google Scholar
[18] An Y, He C J, Deng C G, Chen Z Y, Chen H B, Wu T, Lu Y G, Gu X R, Wang J M, Liu Y W, Li Z Q 2020 Ceram. Int. 46 4664Google Scholar
[19] Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C 6 10693Google Scholar
[20] Hu Q Y, Jin L, Wang T, Li C C, Xing Z, Wei X Y 2015 J. Alloys Compd. 640 416Google Scholar
[21] Wang T, Jin L, Li C C, Hu Q Y, Wei X Y 2015 J. Am. Ceram. Soc. 98 559Google Scholar
[22] Shen Z B, Wang X H, LuoB C, Li L T 2015 J. Mater. Chem. A 3 18146Google Scholar
[23] Zhou M X, Liang R H, Zhou Z Y, Dong X L 2018 J. Mater. Chem. A 6 17896Google Scholar
[24] Zheng D G, Zuo R Z, Zhang D S, Li Y 2015 J. Am. Ceram. Soc. 98 2692Google Scholar
[25] Cao W P, Li W L, Dai X F, Zhang T D, Sheng J, Hou Y F, Fei W D 2016 J. Eur. Ceram. Soc. 36 593Google Scholar
[26] Tian Y, Jin L, Hu Q Y, Yu K, Zhuang Y Y, Viola G, Abrahams I, Xu Z, Wei X, Yan H X 2019 J. Mater. Chem. A 7 834Google Scholar
[27] Tian Y, Jin L, Zhang H F, Xu Z, Wei X Y, Viola G, Abrahams I, Yan H X 2017 J. Mater. Chem. A 5 17525Google Scholar
[28] Zhao L, Liu Q, Gao J, Zhang S J, Li J F 2017 Adv. Mater. 29 1701824Google Scholar
[29] Qiao X S, Zhang X S, Wu D, Chao X L, Yang Z P 2018 J. Adv. Dielectr. 8 1830006Google Scholar
[30] Shao T Q, Du H L, Ma H, Qu S B, Wang J, Wang J F, Wei X Y, Xu Z 2017 J. Mater. Chem. A 5 554Google Scholar
[31] Qu B Y, Du H L, Yang Z T 2016 J. Mater. Chem. C 4 1795Google Scholar
[32] Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar
[33] Yang Z T, Gao F, Du H L, Jin L, Yan L L, Hu Q Y, Yu Y, Qu S B, Wei X Y, Xu Z, Wang Y J 2019 Nano Energy 58 768Google Scholar
[34] Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849Google Scholar
[35] Malic B, Koruza J, Hrescak J, Bernard J, Wang K, Fisher J, Bencan A 2015 Materials 8 8117Google Scholar
[36] Hao X H, Wang Y, Zhang L, Zhang L W 2013 Appl. Phys. Lett. 102 163903Google Scholar
[37] 杜红亮, 杨泽田, 高峰, 靳立, 程花蕾, 屈少波 2018 无机材料学报 33 1046Google Scholar
Du H L, Yang Z T, Gao F, Jin L, Cheng H L, Qu S B 2018 J. Inorg. Mater. 33 1046Google Scholar
[38] Chen L M, Hao X H, Zhang Q W, An S L 2016 J. Mater. Sci.- Mater Electron. 27 4534Google Scholar
[39] Chen X F, Zhang H L, Cao F, Wang G S 2009 J. Appl. Phys. 106 034105Google Scholar
[40] Zhang H, Chen X, Cao F, Wang G, Dong X, Hu Z, Du T 2010 J. Am. Ceram. Soc. 93 4015Google Scholar
[41] Ahn C W, Amarsanaa G, Won S S, Chae S A, Lee D S, Kim I W 2015 ACS Appl. Mater. Interfaces 7 26381Google Scholar
[42] Zhang Q M, Li C, Liu H W, Tang Q 2015 J. Am. Ceram. Soc. 98 366Google Scholar
[43] Xu R, Xu Z, Feng Y J, He H L, Tian J J, Huang D 2016 J. Am. Ceram. Soc. 99 2984Google Scholar
[44] 李华梅, 李东杰, 陈学锋, 曹菲, 董显林 2008 物理学报 57 7298Google Scholar
Li H M, Li D J, Chen X F, Cao F, Dong X L 2008 Acta Phys. Sin. 57 7298Google Scholar
[45] Xu R, Xu Z, Feng Y J, Wei X Y, Tian J J, Huang D 2016 J. Appl. Phys. 119 224103Google Scholar
[46] Zhu M K, Liu L Y, Hou Y D, Wang H, Yan H 2007 J. Am. Ceram. Soc. 90 120Google Scholar
[47] Qu B Y, Du H L, Yang Z T, Liu Q H 2017 J. Am. Ceram. Soc. 100 1517Google Scholar
[48] Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar
[49] 陈威, 曹万强 2012 物理学报 61 097701Google Scholar
Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701Google Scholar
[50] Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar
[51] Li J L, Li F, Xu Z, Zhang S J 2018 Adv. Mater. 30 1802155Google Scholar
[52] Xu R, Tian J J, Zhu Q S, Zhao T, Feng Y J, Wei X Y, Xu Z 2017 J. Am. Ceram. Soc. 100 3618Google Scholar
-
图 5 (a) (1 – x)KNN-xBMT陶瓷在–150 ℃至300 ℃以及KNN陶瓷在25 ℃至500 ℃的介电常数随温度的变化; (b) ln(1/εr–1/εm) 随ln(T–Tm)的变化
Fig. 5. (a) Dielectric constant as a function of temperature in a temperature range of –150 ℃ to 300 ℃ for (1 – x)KNN-xBMT ceramics and 25 ℃ to 500 ℃ for pure KNN ceramics; (b) plots of ln(1/εr–1/εm) versus ln(T–Tm) of the (1–x)KNN-xBMT ceramics.
图 8 0.85KNN-0.15BMT陶瓷在不同电场下的(a) P-E图以及(b)储能密度和储能效率; 在不同频率下的(c) P-E图和(d)储能密度和储能效率; 在不同温度下的(e) P-E图和(f)储能密度和储能效率
Fig. 8. (a) P-E loops and (b) Wrec and η under different electric fields, (c) P-E loops and (d) Wrec and η at different frequencies, (e) P-E loops and (f) Wrec and η at different temperatures of 0.85KNN-0.15BMT ceramics.
图 9 (1–x)KNN-xBMT陶瓷在最大击穿电场下直接测试的(a)放电电流随时间的变化, (b)放电储能密度和放电速率t90以及(c) Wdis和Wrec比较图; 0.85KNN-0.15BMT陶瓷在不同电场下直接测试的(d)放电电流随时间的变化, (e) 放电储能密度Wdis以及(f) Wdis和Wrec比较图
Fig. 9. (a) Pulsed discharge current curves, (b) discharge energy density Wdis and discharge time t90, and (c) comparative figures of Wdis and Wrec under breakdown electric field of the (1–x)KNN-xBMT ceramics; (d) pulsed discharge current curves, (e) discharge energy density Wdis, and (f) the comparative figures of Wdis and Wrec under different electric fields of the 0.85KNN-0.15BMT ceramic
表 1 0.85 KNN-0.15 BMT陶瓷与其他部分无铅陶瓷储能性能的比较
Table 1. Comparison of energy storage properties of 0.85 KNN-0.15 BMT ceramics and other lead-free ceramics.
-
[1] Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mater. Sci. 57 660Google Scholar
[2] Yao K, Chen S T, Rahimabady M, Mirshekarloo M S, Yu S H, Tay F E H, Sritharan T, Lu L 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1968Google Scholar
[3] Cao Y, Irwin P C, Younsi K 2004 IEEE Trans. Dielectr. Electr. Insul. 11 797Google Scholar
[4] Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2014 Adv. Energy Mater. 4 1400610Google Scholar
[5] Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar
[6] Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q 2013 Nat. Commun. 26 1Google Scholar
[7] Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T, Wang Q 2015 Nature 523 576Google Scholar
[8] Xu B, Íñiguez J, Bellaiche L 2017 Nat. Commun. 8 15682Google Scholar
[9] Wang D W, Fan Z M, Zhou D, Khesro A, Murakami S, Feteira A, Zhao Q L, Tan X L, Reaney L M 2018 J. Mater. Chem. A 6 4133Google Scholar
[10] Wu J Y, Mahajan A, Riekehr L, Zhang H F, Yang B, Meng N, Zhang Z, Yan H X 2018 Nano Energy 50 723Google Scholar
[11] Parizi S S, Mellinger A, Caruntu G 2014 ACS Appl. Mater. Interfaces 6 17506Google Scholar
[12] Liu X H, Li Y, Hao X H 2019 J. Mater. Chem. A 7 11858Google Scholar
[13] Shen B Z, Li Y, Hao X H 2019 ACS Appl. Mater. Interfaces 11 34117Google Scholar
[14] Chen L M, Sun N N, Li Y, Zhang Q W, Zhang L W, Hao X H 2018 J. Am. Ceram. Soc. 101 2313Google Scholar
[15] Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar
[16] He C J, An Y, Deng C G, Gu X R, Wang J M, Wu T, Liu Y W, Lu Y G 2019 Mod. Phys. Lett. B 33 1950323Google Scholar
[17] Yao Y, Li Y, Sun N N, Du J H, Li X W, Zhang L W, Zhang Q W, Hao X H 2018 Ceram. Int. 44 5961Google Scholar
[18] An Y, He C J, Deng C G, Chen Z Y, Chen H B, Wu T, Lu Y G, Gu X R, Wang J M, Liu Y W, Li Z Q 2020 Ceram. Int. 46 4664Google Scholar
[19] Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C 6 10693Google Scholar
[20] Hu Q Y, Jin L, Wang T, Li C C, Xing Z, Wei X Y 2015 J. Alloys Compd. 640 416Google Scholar
[21] Wang T, Jin L, Li C C, Hu Q Y, Wei X Y 2015 J. Am. Ceram. Soc. 98 559Google Scholar
[22] Shen Z B, Wang X H, LuoB C, Li L T 2015 J. Mater. Chem. A 3 18146Google Scholar
[23] Zhou M X, Liang R H, Zhou Z Y, Dong X L 2018 J. Mater. Chem. A 6 17896Google Scholar
[24] Zheng D G, Zuo R Z, Zhang D S, Li Y 2015 J. Am. Ceram. Soc. 98 2692Google Scholar
[25] Cao W P, Li W L, Dai X F, Zhang T D, Sheng J, Hou Y F, Fei W D 2016 J. Eur. Ceram. Soc. 36 593Google Scholar
[26] Tian Y, Jin L, Hu Q Y, Yu K, Zhuang Y Y, Viola G, Abrahams I, Xu Z, Wei X, Yan H X 2019 J. Mater. Chem. A 7 834Google Scholar
[27] Tian Y, Jin L, Zhang H F, Xu Z, Wei X Y, Viola G, Abrahams I, Yan H X 2017 J. Mater. Chem. A 5 17525Google Scholar
[28] Zhao L, Liu Q, Gao J, Zhang S J, Li J F 2017 Adv. Mater. 29 1701824Google Scholar
[29] Qiao X S, Zhang X S, Wu D, Chao X L, Yang Z P 2018 J. Adv. Dielectr. 8 1830006Google Scholar
[30] Shao T Q, Du H L, Ma H, Qu S B, Wang J, Wang J F, Wei X Y, Xu Z 2017 J. Mater. Chem. A 5 554Google Scholar
[31] Qu B Y, Du H L, Yang Z T 2016 J. Mater. Chem. C 4 1795Google Scholar
[32] Yang Z T, Du H L, Qu S B, Hou Y D, Ma H, Wang J F, Wang J, Wei X Y, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar
[33] Yang Z T, Gao F, Du H L, Jin L, Yan L L, Hu Q Y, Yu Y, Qu S B, Wei X Y, Xu Z, Wang Y J 2019 Nano Energy 58 768Google Scholar
[34] Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849Google Scholar
[35] Malic B, Koruza J, Hrescak J, Bernard J, Wang K, Fisher J, Bencan A 2015 Materials 8 8117Google Scholar
[36] Hao X H, Wang Y, Zhang L, Zhang L W 2013 Appl. Phys. Lett. 102 163903Google Scholar
[37] 杜红亮, 杨泽田, 高峰, 靳立, 程花蕾, 屈少波 2018 无机材料学报 33 1046Google Scholar
Du H L, Yang Z T, Gao F, Jin L, Cheng H L, Qu S B 2018 J. Inorg. Mater. 33 1046Google Scholar
[38] Chen L M, Hao X H, Zhang Q W, An S L 2016 J. Mater. Sci.- Mater Electron. 27 4534Google Scholar
[39] Chen X F, Zhang H L, Cao F, Wang G S 2009 J. Appl. Phys. 106 034105Google Scholar
[40] Zhang H, Chen X, Cao F, Wang G, Dong X, Hu Z, Du T 2010 J. Am. Ceram. Soc. 93 4015Google Scholar
[41] Ahn C W, Amarsanaa G, Won S S, Chae S A, Lee D S, Kim I W 2015 ACS Appl. Mater. Interfaces 7 26381Google Scholar
[42] Zhang Q M, Li C, Liu H W, Tang Q 2015 J. Am. Ceram. Soc. 98 366Google Scholar
[43] Xu R, Xu Z, Feng Y J, He H L, Tian J J, Huang D 2016 J. Am. Ceram. Soc. 99 2984Google Scholar
[44] 李华梅, 李东杰, 陈学锋, 曹菲, 董显林 2008 物理学报 57 7298Google Scholar
Li H M, Li D J, Chen X F, Cao F, Dong X L 2008 Acta Phys. Sin. 57 7298Google Scholar
[45] Xu R, Xu Z, Feng Y J, Wei X Y, Tian J J, Huang D 2016 J. Appl. Phys. 119 224103Google Scholar
[46] Zhu M K, Liu L Y, Hou Y D, Wang H, Yan H 2007 J. Am. Ceram. Soc. 90 120Google Scholar
[47] Qu B Y, Du H L, Yang Z T, Liu Q H 2017 J. Am. Ceram. Soc. 100 1517Google Scholar
[48] Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar
[49] 陈威, 曹万强 2012 物理学报 61 097701Google Scholar
Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701Google Scholar
[50] Lv X, Wu J G 2019 J. Mater. Chem. C 7 2037Google Scholar
[51] Li J L, Li F, Xu Z, Zhang S J 2018 Adv. Mater. 30 1802155Google Scholar
[52] Xu R, Tian J J, Zhu Q S, Zhao T, Feng Y J, Wei X Y, Xu Z 2017 J. Am. Ceram. Soc. 100 3618Google Scholar
计量
- 文章访问数: 9603
- PDF下载量: 325
- 被引次数: 0