搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温无铅BaTiO3-(Bi1/2Na1/2)TiO3正温度系数电阻陶瓷阻抗和介电谱分析

冷森林 石维 龙禹 李国荣

引用本文:
Citation:

高温无铅BaTiO3-(Bi1/2Na1/2)TiO3正温度系数电阻陶瓷阻抗和介电谱分析

冷森林, 石维, 龙禹, 李国荣

Impedance and dielectric spectroscopy analysis of high TC lead-free BaTiO3-(Bi1/2Na1/2)TiO3 positive temperature coefficient resistivity ceramics

Leng Sen-Lin, Shi Wei, Long Yu, Li Guo-Rong
PDF
导出引用
  • 采用固相反应法制备了Y2O3施主掺杂的92 mol%BaTiO3-8 mol%(Bi1/2Na1/2)TiO3(BBNT8)高温无铅正温度系数电阻(positive temperature coefficient resistivity,PTCR)陶瓷. 利用透射电镜观察材料的显微结构,发现陶瓷的显微结构主要包括晶粒和晶界两部分,观察不到明显的壳层结构. 进一步利用交流阻抗谱研究了陶瓷的宏观电学性能,发现陶瓷的总电阻是晶粒和晶界两部分的贡献,而晶粒电阻很小,在居里温度以上变化不大,材料的PTCR效应主要是晶界部分的贡献. 当温度高于居里温度时,随着温度的升高,晶界介电常数逐渐减小,导致势垒增加,晶界电阻增大,从而产生正温度系数效应. 最后,通过测试材料的介电频谱特性,研究计算了陶瓷的室温电阻率.
    92 mol%BaTiO3-8 mol% (Bi1/2Na1/2)TiO3 (BBNT8) lead-free positive temperature coefficient resistivity (PTCR) ceramics doped with Y2O3 are prepared by the solid state reaction method. The microstructure of the sample is observed by transmission electron microscope. Results show that the microstructure of the sample mainly consists of grain and grain boundary, and no obvious shell structure is found. The electrical properties of the sample are further analyzed using the impedance spectroscopy. It is found that the total resistance of BBNT8 is composed of the resistances of grain and grain boundary. The resistance of grain is low and slightly changes with temperature when the temperature is above the Curie temperature. The PTCR effect of the material is mainly dominated by the grain boundary resistance. As the temperature increases up to above the Curie temperature, the grain boundary permittivity decreases, leading to the increase of the potential barrier height and the resistivity of the grain boundary. As a result, the distinct PTCR effect takes place. Finally, the room-temperature resistivity of the BBNT8 is studied by measuring the permittivity-frequency characteristics.
    • 基金项目: 铜仁学院基金(批准号:DS1103)、贵州省自然科学基金(批准号:黔科合J字[2012]2319号)、贵州省人才基金(批准号:黔教合KY字[2012]102号, TZJF-2011年-10号)和中国科学院无机功能材料与器件重点实验室开放基金(批准号:KLIFMD-2012-02)资助的课题.
    • Funds: Project supported by the Tongren University Foundation, China (Grant No. DS1103), the Natural Science Foundation of Guizhou Province, China (Grant No. J[2012]2319), the Special Foundation for Scientists of Guizhou Province, China (Grant Nos. KY[2012]102, TZJF-2011-10), and the Foundation of Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences (Grant No. KLIFMD-2012-02).
    [1]

    Hayman P W, Dam R W 1955 German Patent 929350 [1955-06-23]

    [2]

    Wang S H, Hwang F S, Tseng T Y 1990 J. Am. Ceram. Soc. 73 2767

    [3]

    Kuwabara M, Suemura S, Kawahara M 1985 Am. Ceram. Soc. Bull. 64 1394

    [4]

    Smolensky G A, Isupov V A, Agranovskaya A I, Krainik N N 1961 Sov. Phys. Solid State 2 2651

    [5]

    Huo W R, Qu Y F 2006 Sens. Actuators A 128 265

    [6]

    Takeda H, Shimada T, Katsuyama Y, Shiosaki T 2009 J. Electroceram. 22 263

    [7]

    Takeda H, Aoto W, Shiosaki T 2005 Appl. Phys. Lett. 87 102104

    [8]

    Leng S L, Li G R, Zheng L Y, Shi W, Zhu Y 2013 J. Mater. Sci.: Mater. Electron. 24 431

    [9]

    Hirose N, West A R 1996 J. Am Ceram. Soc. 79 1633

    [10]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [11]

    Yuan C L, Liu X Y, Huang J Y, Zhou C R, Xu J W 2011 Acta Phys. Sin. 60 025201 (in Chinese) [袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文 2011 物理学报 60 025201]

    [12]

    Yuan C L, Liu X Y, Yang Yun, Xu J W, Gu Y 2010 Acta Phys. Sin. 59 7396 (in Chinese) [袁昌来, 刘心宇, 杨云, 许积文, 谷岩 2010 物理学报 59 7396]

    [13]

    Sinclair D C, West A R 1994 J. Mater. Sci. 29 6061

    [14]

    Xiang P H, Takeda H, Shiosaki T 2008 J. Appl. Phys. 103 064102

    [15]

    Irvine J T S, Sinclair D C, West A R 1990 Adv. Mater. 2 132

    [16]

    West A R, Sinclair D C, Hirose N 1997 J. Electroceram. 11 65

    [17]

    Hari N S, Padmini P, Kutty T R N 1997 J. Mater. Sci. Mater. Electron. 8 15

    [18]

    Yuan C L, Liu X Y, Zhou C R, Xu J W, Yang Y 2011 Chin. Phys. B 20 048701

    [19]

    Heywang W 1971 J. Mater. Sci. 6 1214

    [20]

    Haywang W 1961 Solid State Electron. 3 51

    [21]

    Zhang P L, Zhong W L, Liu S D 1987 J. Chin. Ceram. Soc. 15 136 (in Chinese) [张沛霖, 钟维烈, 刘斯栋 1987 硅酸盐学报 15 136]

  • [1]

    Hayman P W, Dam R W 1955 German Patent 929350 [1955-06-23]

    [2]

    Wang S H, Hwang F S, Tseng T Y 1990 J. Am. Ceram. Soc. 73 2767

    [3]

    Kuwabara M, Suemura S, Kawahara M 1985 Am. Ceram. Soc. Bull. 64 1394

    [4]

    Smolensky G A, Isupov V A, Agranovskaya A I, Krainik N N 1961 Sov. Phys. Solid State 2 2651

    [5]

    Huo W R, Qu Y F 2006 Sens. Actuators A 128 265

    [6]

    Takeda H, Shimada T, Katsuyama Y, Shiosaki T 2009 J. Electroceram. 22 263

    [7]

    Takeda H, Aoto W, Shiosaki T 2005 Appl. Phys. Lett. 87 102104

    [8]

    Leng S L, Li G R, Zheng L Y, Shi W, Zhu Y 2013 J. Mater. Sci.: Mater. Electron. 24 431

    [9]

    Hirose N, West A R 1996 J. Am Ceram. Soc. 79 1633

    [10]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [11]

    Yuan C L, Liu X Y, Huang J Y, Zhou C R, Xu J W 2011 Acta Phys. Sin. 60 025201 (in Chinese) [袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文 2011 物理学报 60 025201]

    [12]

    Yuan C L, Liu X Y, Yang Yun, Xu J W, Gu Y 2010 Acta Phys. Sin. 59 7396 (in Chinese) [袁昌来, 刘心宇, 杨云, 许积文, 谷岩 2010 物理学报 59 7396]

    [13]

    Sinclair D C, West A R 1994 J. Mater. Sci. 29 6061

    [14]

    Xiang P H, Takeda H, Shiosaki T 2008 J. Appl. Phys. 103 064102

    [15]

    Irvine J T S, Sinclair D C, West A R 1990 Adv. Mater. 2 132

    [16]

    West A R, Sinclair D C, Hirose N 1997 J. Electroceram. 11 65

    [17]

    Hari N S, Padmini P, Kutty T R N 1997 J. Mater. Sci. Mater. Electron. 8 15

    [18]

    Yuan C L, Liu X Y, Zhou C R, Xu J W, Yang Y 2011 Chin. Phys. B 20 048701

    [19]

    Heywang W 1971 J. Mater. Sci. 6 1214

    [20]

    Haywang W 1961 Solid State Electron. 3 51

    [21]

    Zhang P L, Zhong W L, Liu S D 1987 J. Chin. Ceram. Soc. 15 136 (in Chinese) [张沛霖, 钟维烈, 刘斯栋 1987 硅酸盐学报 15 136]

  • [1] 杨宇祥, 白世展, 林海军, 李建闽, 张甫. 基于multisine激励与整周期采样的多频电阻抗成像系统设计. 物理学报, 2022, 71(5): 058703. doi: 10.7498/aps.71.20211375
    [2] 周达仁, 卢奂采, 程相乐, McFarland D. Michael. 基于反射系数估算的半空间边界阻抗和声源直接辐射重构. 物理学报, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [3] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应. 物理学报, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [4] 陈小明, 李国荣. BaTiO3基无铅陶瓷大电致伸缩系数. 物理学报, 2022, 71(16): 167701. doi: 10.7498/aps.71.20220451
    [5] 陈小明, 王明焱, 唐木智明, 李国荣. CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性. 物理学报, 2021, 70(19): 197701. doi: 10.7498/aps.70.20210440
    [6] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [7] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为. 物理学报, 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [8] 郭各朴, 宿慧丹, 丁鹤平, 马青玉. 基于电阻抗层析成像的高强度聚焦超声温度监测技术. 物理学报, 2017, 66(16): 164301. doi: 10.7498/aps.66.164301
    [9] 赵建森, 张芝涛, 王健, 俞哲. 一种基于5—20 kHz交流激励的U形等离子体天线. 物理学报, 2012, 61(19): 195201. doi: 10.7498/aps.61.195201
    [10] 袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文. Bi0.5Ba0.5FeO3 陶瓷的电性能及阻抗分析. 物理学报, 2011, 60(2): 025201. doi: 10.7498/aps.60.025201
    [11] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生. (K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究. 物理学报, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [12] 袁昌来, 刘心宇, 杨云, 许积文, 谷岩. BaFe0.4Sn0.6O3/BaBiO3负温度系数复合热敏陶瓷阻抗分析. 物理学报, 2010, 59(10): 7396-7403. doi: 10.7498/aps.59.7396
    [13] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [14] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [15] 李印峰, 尹世忠, M. Vázquez. 非晶和纳米晶软磁丝状样品的环向磁化过程. 物理学报, 2005, 54(7): 3391-3396. doi: 10.7498/aps.54.3391
    [16] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷. 物理学报, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [17] 李金华, 袁宁一, 陈王丽华, 林成鲁. 用离子束增强沉积从V2O5粉末制备高热电阻温度系数VO_2薄膜. 物理学报, 2002, 51(8): 1788-1792. doi: 10.7498/aps.51.1788
    [18] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
    [19] 徐明祥, 焦正宽. In替代(La2/3Ca1/3)(Mn(3-2x)/3In2x/3)O3体系巨磁电阻效应的研究. 物理学报, 1998, 47(6): 1006-1011. doi: 10.7498/aps.47.1006
    [20] 王刚, 杨国权, 管荻华, 姜莉, 帕斯夸利·毛罗, 皮斯托亚·詹弗兰科, 解思深. 阻抗谱法确定扩散系数. 物理学报, 1995, 44(12): 1964-1968. doi: 10.7498/aps.44.1964
计量
  • 文章访问数:  4759
  • PDF下载量:  1002
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-07
  • 修回日期:  2013-11-10
  • 刊出日期:  2014-02-05

/

返回文章
返回