搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi3+掺杂无铅双钙钛矿Cs2Ag0.6Na0.4InCl6的发光性质

王佳旭 李忠辉 赵炎 蒋小康 周恒为

引用本文:
Citation:

Bi3+掺杂无铅双钙钛矿Cs2Ag0.6Na0.4InCl6的发光性质

王佳旭, 李忠辉, 赵炎, 蒋小康, 周恒为
cstr: 32037.14.aps.73.20240901

Luminescence properties of Bi3+ doped leadless double perovskite Cs2Ag0.6Na0.4InCl6

Wang Jia-Xu, Li Zhong-Hui, Zhao Yan, Jiang Xiao-Kang, Zhou Heng-Wei
cstr: 32037.14.aps.73.20240901
PDF
HTML
导出引用
  • 现需开发一种低耗能、绿色环保制备双钙钛矿荧光粉的工艺, 并将其他金属离子掺入该基质, 获得一种高量子效率的新型发光材料. 本文采用微波固相法制备了Bi3+掺杂无铅双钙钛矿Cs2Ag0.6Na0.4InCl6荧光粉, 该方法无需配体辅助, 绿色环保. 通过X射线衍射仪和扫描电子显微镜对晶体结构和形貌进行表征, 并通过激发光谱、发射光谱和时间分辨光谱以及量子效率对其发光性能进行研究. 结果表明: 1) Cs2Ag0.6Na0.4InCl6为立方晶体, 属于$ Fm\bar 3m $空间群, 晶粒形貌为不规则颗粒; 2)当Bi3+的最佳掺杂浓度为0.0013 mmol时, Cs2Ag0.6Na0.4InCl6材料发射中心波长为562 nm, 平均荧光寿命达到2.60 μs, 量子效率达到45.28% ; 3)当Bi3+离子浓度超过0.0013 mmol时, 会产生明显的浓度猝灭效应, 主要是因为Bi3+离子之间电四极-电四极(q-q)相互作用; 4) Cs2Ag0.6Na0.4InCl6掺杂Bi3+荧光粉的色度坐标(CIE)位于黄光区域, 是一种具有潜在应用价值的暖白光LED用黄色荧光粉.
    We need to develop a low energy consumption, green and environmentally friendly process for preparing double perovskite fluorescent powders, and incorporate other metal ions into the matrix to obtain a new type of luminescent material with high quantum efficiency. In this study a microwave solid-state method is used to prepare Bi3+ doped lead-free double perovskite Cs2Ag0.6Na0.4InCl6 fluorescent powders. This method does not require ligand assistance and is environmentally friendly. The crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, and the luminescence performance is studied by excitation spectroscopy, emission spectroscopy, time-resolved spectroscopy, and quantum efficiency. The results are shown below 1) The Cs2Ag0.6Na0.4InCl6 is a cubic crystal belonging to the $ Fm\bar 3 m $ space group, and its grain morphology is irregular. 2) When the optimal doping concentration of Bi3+ is 0.0013 mmol, the emission center wavelength of Cs2Ag0.6Na0.4InCl6 material is 562 nm, the average fluorescence lifetime reaches 2.60 μs, and the quantum efficiency attains 45.28%. 3) When the concentration of Bi3+ ions exceeds 0.0013 mmol, a significant concentration quenching effect occurs, which is mainly due to the electric quadrupole electric quadrupole (q-q) interaction between Bi3+ ions. 4) The chromaticity coordinates of the Cs2Ag0.6Na0.4InCl6 doped Bi3+phosphor are located in the yellow-light region, making it a potential yellow phosphor for warm white light emitting diode (LED) applications.
      通信作者: 蒋小康, jiangxiaokang@163.com ; 周恒为, zhw33221@163.com
    • 基金项目: 新疆凝聚态相变与微结构实验室开放课题重点项目(批准号: XJDX0912Z2401 )资助的课题.
      Corresponding author: Jiang Xiao-Kang, jiangxiaokang@163.com ; Zhou Heng-Wei, zhw33221@163.com
    • Funds: Project supported by the Key Program of Open Project of the Xinjiang Condensed Phase Transition and Microstructure Laboratory, China (Grant No. XJDX0912Z2401).
    [1]

    Yu Y X, Zhou Y F, Ang Y J, Zhang Y Q, Liu X D, Liang X J, Liu J P, Chen S Q, Xiang W D 2021 J. Lumin. 236 118129Google Scholar

    [2]

    Xu Q L, Yang D W, Lü J, Sun Y Y, Zhang L J 2018 Small Methods 2 1700316Google Scholar

    [3]

    Zhao X G, Yang D W, Ren J C, Sun Y H, Xiao Z W, Zhang L J 2018 Joule 2 1662Google Scholar

    [4]

    Filip M R, Hillman S, Haghighirad A A, Snaith H J, Giustino F 2016 J. Phys. Chem. Lett. 7 2579Google Scholar

    [5]

    Wei F X, Deng Z Y, Sun S J, Xie F, Kieslich G, Evans, Donald M 2016 Mater. Horiz. 3 328Google Scholar

    [6]

    Wei F X, Deng Z Y, Sun S J, Zhang F H, Evans-Donald M, Kieslich G, Tominaka S, Carpenter-Michael A, Zhang J, Bristowe-Paul D, Cheetham-Anthony K 2017 Chem. Mater. 29 1089Google Scholar

    [7]

    Tran T, Thao, Panella J R, Chamorro J R, Morey J R, McQueen T M 2017 Mater. Horiz. 4 688Google Scholar

    [8]

    Bekenstein Y, Dahl J C, Huang J M, Osowiecki W T, Swabeck J K, Chan E M, Yang P D, Alivisatos A P 2018 Nano Lett. 18 3502Google Scholar

    [9]

    Hao X G, Yang D G, Sun Y H, Li T S, Zhang L J, Yu L P, Zunger A 2017 J. Am. Chem. Soc. 139 6718Google Scholar

    [10]

    Jain A, Voznyy O, Sargent E H 2017 J. Phys. Chem. 121 7183Google Scholar

    [11]

    皮慧慧, 李国辉, 周博林, 崔艳霞 2021 发光学报 42 650Google Scholar

    Pi H H, Li G H, Zhou B L, Cui Y X 2021 J. Lumin. 42 650Google Scholar

    [12]

    Li X, Gao X P, Zhang X T, Shen X Y, Lu M, Wu J L, Shi Z F, Colvin Vicki L, Hu J H, Bai X, Yu W W, Zhang Y 2021 Adv. Sci. Lett. 8 2003334Google Scholar

    [13]

    李鑫 2023 博士学位论文 (吉林: 吉林大学)

    Li X 2023 Ph. D. Dissertation (Jilin: Jilin University

    [14]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [15]

    Aron W 2015 J. Phys. Chem. 119 5755Google Scholar

    [16]

    Hoefler S F, Trimmel G, Rath T 2017 Monatsh. Chem. 148 795Google Scholar

    [17]

    Hu H, Dong B H, Zhang W 2017 J. Mater. Chem. 5 11436Google Scholar

    [18]

    Cho H, Kim Y H, Wolf C, Lee H D, Lee T W 2018 Adv. Mater. 30 1704587Google Scholar

    [19]

    Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W, Sargent E H 2019 Chem. Rev. 119 7444Google Scholar

    [20]

    Majher J D, Gray M B, Strom T A, Patrick M 2019 Chem. Mater. 31 1738Google Scholar

    [21]

    Zhang H N, Dun G H, Feng Q X, Zhao R, Liang R Q, Gao X Y, Thomas H, Chen M, Geng X S, Liu M Y, Huang Y, Zheng X R, Qin K, Tan X C, Wang X F, Xie D, Yang Y, Tian H, Zhou Y Y, Nitin P P, Wang X Y, Hong J W, Ren T L 2020 IEEE Trans. Electron Devices 67 3191Google Scholar

    [22]

    Bartel C J, Sutton C, Goldsmith B R, Ouyang R H, Charles B M, Luca M G, Matthias S 2019 Sci. Adv. 5 eaav0693Google Scholar

    [23]

    Blasse G 1968 Phys. Lett. A. 6 444Google Scholar

    [24]

    Xiao F, Yi R X, Yuan H L, Zang G J, Xie C N 2018 Spectrochim. Acta A 202 352Google Scholar

    [25]

    Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F S, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541Google Scholar

    [26]

    Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Toshio K, Hideo H, Guangda N, Efrat L, Cheng Y B, Tang J 2018 Adv. Funct. Mater. 28 1801131Google Scholar

    [27]

    Han P G, Mao X, Yang S Q, Zhang F, Yang B, Wei D H, Deng W Q, Han K L 2019 Angew. Chem. Int. Ed. 58 17231Google Scholar

    [28]

    Li J H, Tan Z F, Hu M C, Chen C, Luo J J, Li S R, Gao L, Xiao Z W, Niu G D, Tang J 2019 Front. Optoelectron. 12 352Google Scholar

    [29]

    Rainer W N 2013 J. Phys. Conf. Ser. 443 012080Google Scholar

    [30]

    Gong X K, Zhang X S, Li Q, Liu L, Zhang Y M, Li C, Kong L N, Xu J P, Li L 2023 J. Colloid Interface Sci. 648 865Google Scholar

  • 图 1  Cs2Ag0.6Na0.4In1–xCl6:xBi3+系列样品XRD图谱

    Fig. 1.  XRD patterns of Cs2Ag0.6Na0.4In1–xCl6:xBi3+ phosphors.

    图 2  Cs2Ag0.6Na0.4InCl6, Cs2Ag0.6Na0.4In0.98Cl6:0.02 Bi3+荧光粉的X射线光电子能谱

    Fig. 2.  X-ray photoelectron spectroscopy of Cs2Ag0.6Na0.4InCl6, Cs2Ag0.6Na0.4In0.98Cl6:0.02 Bi3+ phosphor powder.

    图 3  Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+的XRD结构精修图谱

    Fig. 3.  Rietveld refinement of XRD pattern of Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+.

    图 4  Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+荧光粉的SEM图

    Fig. 4.  SEM image of Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+.

    图 5  (a)室温下Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+ 荧光粉的激发和发射光谱图; (b)依赖发射波长的Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+激发光谱(250—450 nm); (c)室温下Cs2Ag0.6Na0.4In1–xCl6:xBi3+荧光粉的发射光谱图; (d) Bi3+掺杂浓度与发射荧光强度图; (e) Cs2Ag0.6Na0.4In1–xCl6:xBi3+的lg(I/x)与lg(x)关系曲线

    Fig. 5.  (a) Excitation and emission spectra of Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+ phosphor at room temperature; (b) emission wavelength dependent excitation spectrum of Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+, from 250 nm to 450 nm; (c) emission spectra of Cs2Ag0.6Na0.4In1–xCl6:xBi3+ phosphor at room temperature; (d) emission fluorescence intensity versus Bi3+ doping concentration; (e) curve of lg(I/x) versus lg(x) for Cs2Ag0.6Na0.4In1–xCl6:xBi3+ .

    图 6  (a) Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+的变温光谱图; (b) 荧光光谱半峰宽与温度的函数拟合结果; (c) STE发射的位形图; (d) Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+的ln(I0/(I–1))与1/(kBT )关系曲线

    Fig. 6.  (a) Temperature dependent spectrogram of Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+; (b) the fitting results of the function between the half peak width of fluorescence spectrum and temperature; (c) stereogram of STE emission; (d) curve of ln(I0/(I–1)) versus 1/(kBT ) for Cs2Ag0.6Na0.4In0.987Cl6:xBi3+.

    图 7  样品 Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+的(a)衰减曲线与荧光寿命以及(b)量子效率

    Fig. 7.  (a) Attenuation curve and fluorescence lifetime and (b) quantum efficiency for sample Cs2Ag0.6Na0.4In0.987Cl6:0.013Bi3+.

    图 8  Cs2Ag0.6Na0.4In1–xCl6:xBi3+的色坐标

    Fig. 8.  CIE of Cs2Ag0.6Na0.4In1–xCl6:xBi3+ .

  • [1]

    Yu Y X, Zhou Y F, Ang Y J, Zhang Y Q, Liu X D, Liang X J, Liu J P, Chen S Q, Xiang W D 2021 J. Lumin. 236 118129Google Scholar

    [2]

    Xu Q L, Yang D W, Lü J, Sun Y Y, Zhang L J 2018 Small Methods 2 1700316Google Scholar

    [3]

    Zhao X G, Yang D W, Ren J C, Sun Y H, Xiao Z W, Zhang L J 2018 Joule 2 1662Google Scholar

    [4]

    Filip M R, Hillman S, Haghighirad A A, Snaith H J, Giustino F 2016 J. Phys. Chem. Lett. 7 2579Google Scholar

    [5]

    Wei F X, Deng Z Y, Sun S J, Xie F, Kieslich G, Evans, Donald M 2016 Mater. Horiz. 3 328Google Scholar

    [6]

    Wei F X, Deng Z Y, Sun S J, Zhang F H, Evans-Donald M, Kieslich G, Tominaka S, Carpenter-Michael A, Zhang J, Bristowe-Paul D, Cheetham-Anthony K 2017 Chem. Mater. 29 1089Google Scholar

    [7]

    Tran T, Thao, Panella J R, Chamorro J R, Morey J R, McQueen T M 2017 Mater. Horiz. 4 688Google Scholar

    [8]

    Bekenstein Y, Dahl J C, Huang J M, Osowiecki W T, Swabeck J K, Chan E M, Yang P D, Alivisatos A P 2018 Nano Lett. 18 3502Google Scholar

    [9]

    Hao X G, Yang D G, Sun Y H, Li T S, Zhang L J, Yu L P, Zunger A 2017 J. Am. Chem. Soc. 139 6718Google Scholar

    [10]

    Jain A, Voznyy O, Sargent E H 2017 J. Phys. Chem. 121 7183Google Scholar

    [11]

    皮慧慧, 李国辉, 周博林, 崔艳霞 2021 发光学报 42 650Google Scholar

    Pi H H, Li G H, Zhou B L, Cui Y X 2021 J. Lumin. 42 650Google Scholar

    [12]

    Li X, Gao X P, Zhang X T, Shen X Y, Lu M, Wu J L, Shi Z F, Colvin Vicki L, Hu J H, Bai X, Yu W W, Zhang Y 2021 Adv. Sci. Lett. 8 2003334Google Scholar

    [13]

    李鑫 2023 博士学位论文 (吉林: 吉林大学)

    Li X 2023 Ph. D. Dissertation (Jilin: Jilin University

    [14]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [15]

    Aron W 2015 J. Phys. Chem. 119 5755Google Scholar

    [16]

    Hoefler S F, Trimmel G, Rath T 2017 Monatsh. Chem. 148 795Google Scholar

    [17]

    Hu H, Dong B H, Zhang W 2017 J. Mater. Chem. 5 11436Google Scholar

    [18]

    Cho H, Kim Y H, Wolf C, Lee H D, Lee T W 2018 Adv. Mater. 30 1704587Google Scholar

    [19]

    Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W, Sargent E H 2019 Chem. Rev. 119 7444Google Scholar

    [20]

    Majher J D, Gray M B, Strom T A, Patrick M 2019 Chem. Mater. 31 1738Google Scholar

    [21]

    Zhang H N, Dun G H, Feng Q X, Zhao R, Liang R Q, Gao X Y, Thomas H, Chen M, Geng X S, Liu M Y, Huang Y, Zheng X R, Qin K, Tan X C, Wang X F, Xie D, Yang Y, Tian H, Zhou Y Y, Nitin P P, Wang X Y, Hong J W, Ren T L 2020 IEEE Trans. Electron Devices 67 3191Google Scholar

    [22]

    Bartel C J, Sutton C, Goldsmith B R, Ouyang R H, Charles B M, Luca M G, Matthias S 2019 Sci. Adv. 5 eaav0693Google Scholar

    [23]

    Blasse G 1968 Phys. Lett. A. 6 444Google Scholar

    [24]

    Xiao F, Yi R X, Yuan H L, Zang G J, Xie C N 2018 Spectrochim. Acta A 202 352Google Scholar

    [25]

    Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F S, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541Google Scholar

    [26]

    Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Toshio K, Hideo H, Guangda N, Efrat L, Cheng Y B, Tang J 2018 Adv. Funct. Mater. 28 1801131Google Scholar

    [27]

    Han P G, Mao X, Yang S Q, Zhang F, Yang B, Wei D H, Deng W Q, Han K L 2019 Angew. Chem. Int. Ed. 58 17231Google Scholar

    [28]

    Li J H, Tan Z F, Hu M C, Chen C, Luo J J, Li S R, Gao L, Xiao Z W, Niu G D, Tang J 2019 Front. Optoelectron. 12 352Google Scholar

    [29]

    Rainer W N 2013 J. Phys. Conf. Ser. 443 012080Google Scholar

    [30]

    Gong X K, Zhang X S, Li Q, Liu L, Zhang Y M, Li C, Kong L N, Xu J P, Li L 2023 J. Colloid Interface Sci. 648 865Google Scholar

  • [1] 罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋. 稀土掺杂Gd2Te4O11亚碲酸盐荧光粉的合成及其发光性能. 物理学报, 2023, 72(1): 017801. doi: 10.7498/aps.72.20221341
    [2] 贾朝阳, 高当丽, 于佳, 胡媛媛, 柴瑞鹏, 庞庆, 张翔宇. 镧系离子掺杂Li0.9K0.1NbO3荧光粉的多色多模荧光调控及防伪应用. 物理学报, 2023, 72(22): 224210. doi: 10.7498/aps.72.20230517
    [3] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2022, 71(1): 017101. doi: 10.7498/aps.71.20211599
    [4] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [5] 姜洪喜, 吕树臣. Sm3+掺杂NaLa(WO4)2单一基质白光荧光粉制备及发光性能. 物理学报, 2021, 70(17): 177801. doi: 10.7498/aps.70.20210493
    [6] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211599
    [7] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [8] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军. 钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性. 物理学报, 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [9] 朱振业. 无铅四方相钙钛矿短周期超晶格压电效应机理研究. 物理学报, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [10] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递. 物理学报, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [11] 李永进, 黄杨彬, 刘群, 邱建备, 尹兆益, 宋志国. 近紫外激发具有颜色可调的Er3+/Eu3+共掺BiOCl荧光粉. 物理学报, 2015, 64(17): 177803. doi: 10.7498/aps.64.177803
    [12] 赵聪, 孟庆裕, 孙文军. Eu3+掺杂CaMoO4微米荧光粉发光性质的研究. 物理学报, 2015, 64(10): 107803. doi: 10.7498/aps.64.107803
    [13] 梁锋, 胡义华, 陈丽, 王小涓. 荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递. 物理学报, 2013, 62(18): 183302. doi: 10.7498/aps.62.183302
    [14] 齐智坚, 黄维刚. 白光LED用Ca3Si3O9:Dy3+荧光粉的制备及其发光性能. 物理学报, 2013, 62(19): 197801. doi: 10.7498/aps.62.197801
    [15] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理. 物理学报, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [16] 钟红梅, 刘茜, 周遥, 庄建东, 周虎. AlON:Ce3+荧光粉的制备及光谱研究. 物理学报, 2013, 62(8): 087804. doi: 10.7498/aps.62.087804
    [17] 孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭. Eu3+掺杂CaWO4红色荧光粉发光性质的浓度依赖关系研究. 物理学报, 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [18] 王倩, 慈志鹏, 王育华, 朱革, 温艳, 刘碧桃, 阙美丹. Mg5SnB2O10:Eu3+, Bi3+—-一种用于发光二极管的红色荧光粉的制备及其发光性能的研究. 物理学报, 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [19] 廖秋荣, 胡运生, 刘荣辉, 刘元红, 滕晓明, 夏天, 庄卫东. P掺杂对绿色荧光粉BaMgAl10O17:Mn2+性能的影响. 物理学报, 2009, 58(4): 2776-2780. doi: 10.7498/aps.58.2776
    [20] 马明星, 朱达川, 涂铭旌. H3BO3对BaAl2Si2O8:Eu2+蓝色荧光粉物相组成和发光特性的影响. 物理学报, 2009, 58(9): 6512-6517. doi: 10.7498/aps.58.6512
计量
  • 文章访问数:  291
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-29
  • 修回日期:  2024-08-02
  • 上网日期:  2024-09-05
  • 刊出日期:  2024-09-20

/

返回文章
返回