-
采用高温固相法成功合成了单一相的Eu3+, Bi3+共掺的Mg5SnB2O10红色荧光粉, 并通过X射线衍射、漫反射光谱、光致发光光谱等手段对该体系的结构及其发光特性进行了测试和研究. 激发光谱表明, 该荧光粉在393 nm呈现Eu3+的7F0—5L6特征激发, 可以与用于发光二极管的近紫外芯片很好地匹配. 在393 nm激发下, 其发射光谱在591, 612, 701 nm处呈现Eu3+的5D0—7F1, 5D0—7F2, 5D0—7F4的特征发射. 并且当固定Eu3+的浓度时, 随着Bi3+含量的增加, 发现Bi3+, Eu3+在这一体系中存在能量传递现象, 系列样品发光强度大幅度提高. 通过研究系列样品在不同Bi3+, Eu3+掺杂浓度下的发光性能, 得出最佳样品为Mg4.89Eu0.1Bi0.01SnB2O10, 其积分强度达到了商用Y2O2S: Eu3+的1.1倍.
-
关键词:
- 红色荧光粉 /
- LED /
- Mg5SnB2O10
A novel Mg5SnB2O10: Eu3+, Bi3+ red phosphor is synthesized by a solid-state reaction, whose structure and photoluminescence properties are investigated through X-ray diffraction, diffuse reflection spectrum and photoluminescence spectrum. The excitation spectrum centred at 393 nm reveals the 7F0-5L6 characteristic transition of Eu3+, which matches well with the near ultraviolet chip for light emitting diode (LED). In the emission spectrum under 393 nm excitation, peaks at 591, 612 and 701 nm could be attributed to the transitions of 5D0-7F1, 5D0-7F2 and 5D0-7F4 of Eu3+, respectively. With the introduction of Bi, the emission intensity is improved due to the energy transfer from Bi3+ to Eu3+. In this paper, the optimal doping concentration of Eu3+ and Bi3+ is determined to study the photoluminescence properties and the optimal sample Mg4.89Eu0.1Bi0.01SnB2O10 is obtained. The integral intensity of the emission spectrum for Mg4.89Eu0.1Bi0.01SnB2O10 phosphor excited at 393 nm is about 1.1 times stronger than that of Y2O2S: Eu3+ excited at 394 nm.-
Keywords:
- red phosphor /
- LED /
- Mg5SnB2O10
[1] Nakamura S, Senoh M, Mukai T 1993 Appl. Phys. Lett. 62 2390
[2] Li Y Q, Delsing A C A, de With G, Hintzen H T 2005 Chem. Mater. 17 3242
[3] Jang H S, Jeon D Y 2007 Appl. Phys. Lett. 90 041906
[4] Schlotter P, Schmide R, Schneider J 1997 Appl. Phys. A 64 417
[5] Yamada M, Naitou T, Izuno K, Tamaki H, Murazaki Y, Kameshima M, Mukai T 2003 Jpn. J. Appl. Phys. 42 L20
[6] Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364
[7] Krupke W F 1966 Phys. Rev. 145 325
[8] Oshio S, Matsuoka T, Tanaka S, Kobayashi H 1998 J. Electrochem. Soc. 145 3903
[9] Tabei M, Shionoya S, Ohmatsu H 1975 Jpn. J. Appl. Phys. 14 240
[10] Uheha K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T, Yamamoto H 2006 Electrochem. Solid-State Lett. 9 H22
[11] Berker P 1998 Adv. Mater. 10 979
[12] Rabinovitz R L, Johnston K J, Diaz A L 2010 J. Phys. Chem. C 114 13884
[13] Song E H, Zhao W R, Zhang W, Ming H C, Yi Y C, Zhou M K 2010 J. Lumin. 130 2495
[14] Li P L, Yang Z P, Pang L B, Wang Z J, Guo Q L 2008 J. Rare. Earth. 26 44
[15] Li Z H, Zeng J H, Zhang G C, Li Y D 2005 J. Solid. State. Chem. 178 3624
[16] Liu L Y, Zhang Y L, Hao J Q, Li C Y, Tang Q, Zhang C X, Su Q 2006 Mater. Lett. 60 639
[17] Ding X, Xu Y, Guo C F 2010 Acta Phys. Sin. 59 6636 (in Chinese) [丁旭, 徐琰, 郭崇峰 2010 物理学报 59 6636]
[18] Konijnendijk W L, Blasse G 1985 Mater. Chem. Phys. 12 591
[19] Kawano T, Yamane H 2010 Chem. Mater. 22 5937
[20] Shannon R D 1976 Acta Cryst. A 32 751
[21] Wang J G, Jing X P, Yan C H, Lin J H 2005 J. Electrochem. Soc. 152 G186
[22] Kubelka P, Munk F 1931 Z. Tech. Phys. 12 593
[23] Wei D L, Huang Y L, Shi L, Qiao X, Seo H J 2009 J. Electrochem. Soc. 156 H885
-
[1] Nakamura S, Senoh M, Mukai T 1993 Appl. Phys. Lett. 62 2390
[2] Li Y Q, Delsing A C A, de With G, Hintzen H T 2005 Chem. Mater. 17 3242
[3] Jang H S, Jeon D Y 2007 Appl. Phys. Lett. 90 041906
[4] Schlotter P, Schmide R, Schneider J 1997 Appl. Phys. A 64 417
[5] Yamada M, Naitou T, Izuno K, Tamaki H, Murazaki Y, Kameshima M, Mukai T 2003 Jpn. J. Appl. Phys. 42 L20
[6] Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364
[7] Krupke W F 1966 Phys. Rev. 145 325
[8] Oshio S, Matsuoka T, Tanaka S, Kobayashi H 1998 J. Electrochem. Soc. 145 3903
[9] Tabei M, Shionoya S, Ohmatsu H 1975 Jpn. J. Appl. Phys. 14 240
[10] Uheha K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T, Yamamoto H 2006 Electrochem. Solid-State Lett. 9 H22
[11] Berker P 1998 Adv. Mater. 10 979
[12] Rabinovitz R L, Johnston K J, Diaz A L 2010 J. Phys. Chem. C 114 13884
[13] Song E H, Zhao W R, Zhang W, Ming H C, Yi Y C, Zhou M K 2010 J. Lumin. 130 2495
[14] Li P L, Yang Z P, Pang L B, Wang Z J, Guo Q L 2008 J. Rare. Earth. 26 44
[15] Li Z H, Zeng J H, Zhang G C, Li Y D 2005 J. Solid. State. Chem. 178 3624
[16] Liu L Y, Zhang Y L, Hao J Q, Li C Y, Tang Q, Zhang C X, Su Q 2006 Mater. Lett. 60 639
[17] Ding X, Xu Y, Guo C F 2010 Acta Phys. Sin. 59 6636 (in Chinese) [丁旭, 徐琰, 郭崇峰 2010 物理学报 59 6636]
[18] Konijnendijk W L, Blasse G 1985 Mater. Chem. Phys. 12 591
[19] Kawano T, Yamane H 2010 Chem. Mater. 22 5937
[20] Shannon R D 1976 Acta Cryst. A 32 751
[21] Wang J G, Jing X P, Yan C H, Lin J H 2005 J. Electrochem. Soc. 152 G186
[22] Kubelka P, Munk F 1931 Z. Tech. Phys. 12 593
[23] Wei D L, Huang Y L, Shi L, Qiao X, Seo H J 2009 J. Electrochem. Soc. 156 H885
计量
- 文章访问数: 6460
- PDF下载量: 1214
- 被引次数: 0