-
通过高温固相法分别制备了CaWO4和CaWO4:1%Eu3+ 样品. 测量了样品不同温度(10–300 K)的荧光光谱、荧光衰减曲线和 时间分辨荧光光谱. 样品的荧光光谱表明: 在240 nm紫外光激发下, 两个样品在430 nm处都展现出来源于WO42-的蓝色发射; 样品CaWO4:Eu3+的Eu3+(5D0→7F1, 2, 3,4)的特征发射则归属于WO42-到Eu3+ 间的能量传递.由样品室温(300K)荧光衰减曲线发现: 纯CaWO4的荧光寿命为8.85μs,Eu3+掺杂之后WO42-的荧光寿命缩短至6.27μs,这从另一方面证明了WO42-与Eu3+间能量传递的存在. 由荧光寿命得到T=300K时, CaWO4: 1%Eu3+中WO42-与Eu3+间的能量传递效率(ηET)为29.2%, 能量传递速率(ωET)为4.65×104 s-1.通过时间分辨荧光光谱, 获得了从WO42-到Eu3+之间的能量传递的时间演变过程,当温度由10 K增加到300 K时, 能量传递出现的时间单调变小. 测试了不同温度(10–300 K)对CaWO4:Eu3+的荧光寿命的影响, 发现在10–50K时,Eu3+的荧光寿命增加, 但温度超过50K时发生猝灭, 荧光寿命开始下降; WO42-的荧光寿命则是随着温度的升高逐渐缩短.
-
关键词:
- 能量传递 /
- 红色荧光粉 /
- 温度依赖 /
- CaWO4:Eu3+
The pure CaWO4 and 1%Eu3+ doped CaWO4 phosphors are successfully prepared by the conventional solid state reaction method. The photoluminescence (PL) spectra, decay cures, and time-resolved PL spectra are measured at depend on different temperatures. Fluorescence spectra at room temperature (300 K) and low temperature (10 K) show that these two samples each have a broad band at about 430 nm, originating from the WO42- groups under 240 nm excitation, while the CaWO4:Eu3+sample exhibits the characteristic emission of Eu3+ corresponding to 5D0→7F1, 2, 3,4 transitions due to the absorbed energy transfer from WO42- groups to Eu3+ ions. And the red light at 616 nm of CaWO4: Eu3+ can be excited efficiently by UV (395 nm) and blue (465 nm) light. The decay curves at 300 K illustrate that the lifetime of WO42- group in pure CaWO4 is about 8.85 s but is shortened to 6.27 μs after Eu3+ions have been doped, which is a further good evidence for demonstrating the existence of WO42-–Eu3+ energy transfer process. The energy transfer efficiency (ηET)) and rate (ωET) between WO42- and Eu3+in CaWO4: 1%Eu3+ are 29.2% and 4:65×104 s-1 respectively, when T = 300 K. The energy transfer process is studied in detail by the time-resolved PL spectra, and the lifetime for the appearance of Eu3+ emission in CaWO4 decreases monotonically as temperature increases from 10 K to 300 K. The temperature dependence of luminescence decay time is performed and the results indicated that the lifetime of Eu3+ increases in a temperature range of 10-50 K, when the temperature is more than 50 K, thermal quenching of Eu3+ begins and the lifetime is shortened. However, the lifetime of WO42- reduces constantly with the increase of temperature.-
Keywords:
- energy transfer /
- red phosphors /
- temperature dependence /
- CaWO4:Eu3+
[1] Su Q, Wu H, Pan Y X, Xu J, Guo C F, Zhang X M, Zhang J H, Wang J, Zhang M 2005 J. Rare Earth Soc. 5 513 (in Chinese) [苏锵, 吴昊, 潘跃晓, 徐剑, 郭崇峰, 张新民, 张剑辉, 王静, 张梅 2005 中国稀土学报 5 513]
[2] Cao R P, Peng M Y, Qiu J R 2012 Opt. Express 20 977
[3] Ju G F, Hu Y H, Wu H Y, Yang Z F, Fu C J, Mu Z F, Kang F W 2011 Opt. Mater. 33 1297
[4] Guo C F, Xu Y, L F, Ding X 2010 J. Alloy. Compd. 497 21
[5] Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X 2011 Acta Phys. Sin. 60 013201 (in Chinese) [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴 2011 物理学报 60 013201]
[6] Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805
[7] Mu Z F, Hu Y H, Chen L, Wang X J 2011 J. Lumin. 131 1687
[8] Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 J. Rare Earths 29 837
[9] Zhang J H, Zhu D Q, Wang J X 2012 Semicond. Optoelectron. 33 667 (in Chinese) [张锦华, 朱大庆, 王加贤 2012 半导体光电 33 667]
[10] Li Y Q, Steen J, Krevel J, Botty G, Delsing A, DiSalvo F, With G, Hintzen H 2006 J. Alloy. Compd. 417 273
[11] Yang J J, Wang T, Chen D C, Chen G D, Liu Q L 2012 Mater. Sci. Eng. B 177 1596
[12] Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y, Mu Z F 2013 J. Lumin. 135 113
[13] Spassky D, Mikhailin V, Nazarov M, Ahmad-Fauzi M, Zhbanov A 2012 J. Lumin. 132 2753
[14] Wang W X, Pang P P, Cheng Z Y, Hou Z Y, Li C X, Lin 2011 ACS Appl. Mater. Inter. 3 3921
[15] Treadaway M J, Powell R C 1974 J. Chem. Phys. 61 4003
[16] Kang F W, Hu Y H, Wu H Y, Ju G F 2011 Chin. Phys. Lett. 28 107201
[17] Zorenko Y, Pashkovsky M, Voloshinovskii A, Kuklinski B 2006 J. Lumin. 116 43
[18] Wu H Y, Hu Y H, Kang F W, Li N N, Ju G F, Mu Z F, Yang Z F 2012 J. Am. Ceram. Soc. 95 3214
[19] Wu H Y, Hu Y H, Kang F W, Chen L, Wang X J, Ju G F, Mu Z F 2011 Mater. Res. Bull. 46 2489
[20] Jin Y H, Hu Y H, Chen L, Wang X J, Mu Z F, Wu H Y, Ju G F 2013 Radiat. Meas. 51-52 18
[21] Yang P P, Quan Z W, Li C X, Lian H Z, Huang S S, Lin J 2008 Micropor. Mesop. Mat. 116 524
[22] Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 078802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 078802]
[23] Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]
[24] Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]
[25] Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2012 Appl. Phys. B 107 833
[26] Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2013 Mater. Sci. Eng. B 178 477
[27] Kang F W, Hu Y H, Wu H Y, Mu Z F, Ju G F, Fu C J, Li N N 2012 J. Lumin. 132 887
[28] Wu H Y, Hu Y H, Kang F W, Li N N 2012 J. Mater. Res. 27 959
[29] Shi S K, Gao J, Zhou 2008 Opt. Mater. 30 1616
[30] Peterson R G, Richard C. 1978 J. Lumin. 16 285
[31] Shannon R D 1976 Acta Crystallogr A 32 751
[32] Nazarov M V, Tsukerblat B S, Popovici E J, Jeon D Y J 2004 Phys. Lett. A 330 291
[33] Blasse G 1973 Chem. Phys. Lett. 20 573
[34] Hebbink G A, Grave L, Woldering L A, Reinhoudt D N, van Veggel F C M J 2003 J. Phys. Chem. 107 2483
[35] Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119
[36] Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841
[37] Balaji S, Mandal A K, Annapurna K 2012 Opt. Mater. 34 1930
[38] Treadaway M J, Powell R C 1975 Phys. Rev. B 11 862
[39] Peng H S, Song H W, Chen B J, Wang J W, Lu S Z 2003 J. Chem. Phys. 118 3277
[40] Song H W, Yu L X, Lu S Z, Wang T, Liu Z X 2004 Appl. Phys. Lett. 85 470
[41] Riwotzki K, Haase M 2001 J. Phys. Chem. 105 12709
-
[1] Su Q, Wu H, Pan Y X, Xu J, Guo C F, Zhang X M, Zhang J H, Wang J, Zhang M 2005 J. Rare Earth Soc. 5 513 (in Chinese) [苏锵, 吴昊, 潘跃晓, 徐剑, 郭崇峰, 张新民, 张剑辉, 王静, 张梅 2005 中国稀土学报 5 513]
[2] Cao R P, Peng M Y, Qiu J R 2012 Opt. Express 20 977
[3] Ju G F, Hu Y H, Wu H Y, Yang Z F, Fu C J, Mu Z F, Kang F W 2011 Opt. Mater. 33 1297
[4] Guo C F, Xu Y, L F, Ding X 2010 J. Alloy. Compd. 497 21
[5] Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X 2011 Acta Phys. Sin. 60 013201 (in Chinese) [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴 2011 物理学报 60 013201]
[6] Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805
[7] Mu Z F, Hu Y H, Chen L, Wang X J 2011 J. Lumin. 131 1687
[8] Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 J. Rare Earths 29 837
[9] Zhang J H, Zhu D Q, Wang J X 2012 Semicond. Optoelectron. 33 667 (in Chinese) [张锦华, 朱大庆, 王加贤 2012 半导体光电 33 667]
[10] Li Y Q, Steen J, Krevel J, Botty G, Delsing A, DiSalvo F, With G, Hintzen H 2006 J. Alloy. Compd. 417 273
[11] Yang J J, Wang T, Chen D C, Chen G D, Liu Q L 2012 Mater. Sci. Eng. B 177 1596
[12] Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y, Mu Z F 2013 J. Lumin. 135 113
[13] Spassky D, Mikhailin V, Nazarov M, Ahmad-Fauzi M, Zhbanov A 2012 J. Lumin. 132 2753
[14] Wang W X, Pang P P, Cheng Z Y, Hou Z Y, Li C X, Lin 2011 ACS Appl. Mater. Inter. 3 3921
[15] Treadaway M J, Powell R C 1974 J. Chem. Phys. 61 4003
[16] Kang F W, Hu Y H, Wu H Y, Ju G F 2011 Chin. Phys. Lett. 28 107201
[17] Zorenko Y, Pashkovsky M, Voloshinovskii A, Kuklinski B 2006 J. Lumin. 116 43
[18] Wu H Y, Hu Y H, Kang F W, Li N N, Ju G F, Mu Z F, Yang Z F 2012 J. Am. Ceram. Soc. 95 3214
[19] Wu H Y, Hu Y H, Kang F W, Chen L, Wang X J, Ju G F, Mu Z F 2011 Mater. Res. Bull. 46 2489
[20] Jin Y H, Hu Y H, Chen L, Wang X J, Mu Z F, Wu H Y, Ju G F 2013 Radiat. Meas. 51-52 18
[21] Yang P P, Quan Z W, Li C X, Lian H Z, Huang S S, Lin J 2008 Micropor. Mesop. Mat. 116 524
[22] Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 078802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 078802]
[23] Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]
[24] Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]
[25] Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2012 Appl. Phys. B 107 833
[26] Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2013 Mater. Sci. Eng. B 178 477
[27] Kang F W, Hu Y H, Wu H Y, Mu Z F, Ju G F, Fu C J, Li N N 2012 J. Lumin. 132 887
[28] Wu H Y, Hu Y H, Kang F W, Li N N 2012 J. Mater. Res. 27 959
[29] Shi S K, Gao J, Zhou 2008 Opt. Mater. 30 1616
[30] Peterson R G, Richard C. 1978 J. Lumin. 16 285
[31] Shannon R D 1976 Acta Crystallogr A 32 751
[32] Nazarov M V, Tsukerblat B S, Popovici E J, Jeon D Y J 2004 Phys. Lett. A 330 291
[33] Blasse G 1973 Chem. Phys. Lett. 20 573
[34] Hebbink G A, Grave L, Woldering L A, Reinhoudt D N, van Veggel F C M J 2003 J. Phys. Chem. 107 2483
[35] Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119
[36] Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841
[37] Balaji S, Mandal A K, Annapurna K 2012 Opt. Mater. 34 1930
[38] Treadaway M J, Powell R C 1975 Phys. Rev. B 11 862
[39] Peng H S, Song H W, Chen B J, Wang J W, Lu S Z 2003 J. Chem. Phys. 118 3277
[40] Song H W, Yu L X, Lu S Z, Wang T, Liu Z X 2004 Appl. Phys. Lett. 85 470
[41] Riwotzki K, Haase M 2001 J. Phys. Chem. 105 12709
计量
- 文章访问数: 9055
- PDF下载量: 865
- 被引次数: 0