搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SrZn2(PO4)2:Sn2+,Mn2+荧光粉的发光性质及其能量传递机理

熊晓波 刘万里 袁曦明 刘金存 宋江齐 梁玉军

引用本文:
Citation:

SrZn2(PO4)2:Sn2+,Mn2+荧光粉的发光性质及其能量传递机理

熊晓波, 刘万里, 袁曦明, 刘金存, 宋江齐, 梁玉军

Photoluminescence properties and energy transfer of SrZn2(PO4)2:Sn2+, Mn2+ phosphor

Xiong Xiao-Bo, Liu Wan-Li, Yuan Xi-Ming, Liu Jin-Cun, Song Jiang-Qi, Liang Yu-Jun
PDF
导出引用
  • 采用高温固相法制备了SrZn2(PO4)2:Sn2+(SZ2P:Sn2+), SrZn2(PO4)2:Mn2+(SZ2P:Mn2+), SrZn2 (PO4)2:Sn2+, Mn2+(SZ2P:Sn2+, Mn2+) 荧光粉. 通过X射线衍射、激发和发射光谱详细研究了荧光粉的物相和发光性质. 在SrZn2(PO4)2 基质中, Sn2+离子发射光谱是峰值位于461 nm宽带谱, 归属于Sn2+离子的3P1→1S0能级跃迁, SZ2P:Mn2+激发光谱由基质吸收带(200–300 nm)和位于352, 373, 419, 431和466 nm的一系列激发峰组成, 分别对应Mn2+离子的6A1(6S)→4E(4D), 6A1(6S)→4T2(4D), 6A1(6S)→[4A1(4G), 4E(4G)], 6A1(6S)→4T2(4G)和6A1(6S)→4T1(4G)能级跃迁, 因此, SZ2P:Sn2+ 的发射光谱与SZ2P:Mn2+的激发光谱有较大范围的重叠. 结果表明Sn2+对Mn2+发光有明显的敏化作用. 基于Dexter电多极相互作用能量传递公式和Reisfeld近似原理分析, 荧光粉SZ2P:Sn2+, Mn2+中Sn2+-Mn2+离子之间的能量传递机理属于电四极-电四极相互作用引起的共振能量传递, 并计算出Sn2+-Mn2+离子之间能量传递临界距离Rc ≈ 1.78 nm. 通过改变Sn2+, Mn2+离子掺杂浓度, 实现了荧光粉发光颜色的调节, 在254 nm短波紫外激发下荧光粉发出较强的蓝白光. 研究结果表明SZ2P:Sn2+, Mn2+荧光粉有望应用于紧凑型节能灯照明领域, 随着半导体紫外芯片技术的发展, 有潜力应用于未来的白光发光二极管照明领域.
    In this paper, SrZn2(PO4)2:Sn2+ (SZ2P:Sn2+), SrZn2(PO4)2:Mn2+ (SZ2P:Mn2+), SrZn2(PO4)2:Sn2+, and Mn2+ (SZ2P:Sn2+, Mn2+) phosphors are prepared by high temperature solid state reaction. The X-ray diffraction patterns and photoluminescence spectra of the phosphors are investigated in detail. The emission spectrum of SZ2P:Sn2+ is a wide band peaking at 461 nm due to 3P1 →1S0 transition of Sn2+, and overlaps effectively with the excitation spectrum of SZ2P:Mn2+, which shows that the absorption of SrZn2(PO4)2 host, and a series of peaks at 352, 373, 419, 431, and 466 nm, corresponding to 6A1(6S)→4E(4D), 6A1(6S)→4T2(4D), 6A1(6S)→[4A1(4G), 4E(4G)], 6A1(6S)→4T2(4G) and 6A1(6S) →4T1(4G) transition, respectively, are assigned to a wide band ranging from 200 nm to 300 nm. Therefore, luminescence intensity of Mn2+ is enhanced significantly by co-doping Sn2+ in SrZn2(PO4)2 host. According to the Dexter's energy transfer formula of multipolar interaction and Reisfeld's approximation, it is demonstrated that the energy transfer between Sn2+ and Mn2+ is due to the quadripole-quadripole interaction of the resonance transfer. The critical distance (Rc) of energy transfer is calculated to be about 1.78 nm. The tunable color is achieved by changing the doping concentrations of Sn2+ and Mn2+. The SZ2P:Sn2+, Mn2+ phosphor could emit strong blue-white light under the excitation of 254 nm ultraviolet (UV) light. The result shows that the SZ2P:Sn2+, Mn2+ is a promising phosphor for compact fluorescent lamp, and with the development of short wave UV semiconductor chip, this phosphor has potential applications in white light emitting diodes in the near future.
      通信作者: 袁曦明, xmyuan@foxmail.com
    • 基金项目: 国家自然科学基金(批准号: 21171152)、湖北省自然科学基金(批准号: 2013CFB036)和湖北省教育厅科学研究计划(批准号: B2014016)资助的课题.
      Corresponding author: Yuan Xi-Ming, xmyuan@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21171152), the Natural Science Foundation of Hubei Province, China (Grant No. 2013CFB036), and the Science and Technology Project of Hubei Provincial Department of Education, China (Grant No. B2014016).
    [1]

    Shinde K N, Singh R, Dhoble S J 2014 J. Lumin. 146 91

    [2]

    Kong L, Gan S C, Hong G Y, Zhang J L 2007 J. Rare Earth. 25 692

    [3]

    Wu L Q, Zhang J B, Zhang J F, Qiu G X 1998 Chin. J. Lumin. 19 251 (in Chinese) [吴乐琦, 张建兵, 张锦芳, 裘国兴 1998 发光学报 19 251]

    [4]

    Yang Z P, Zhao F L, Li X N, Zhao J X, Lu Y J 2008 Chin. J. Lumin. 29 941

    [5]

    Wang Z L, Liang H B, Gong M L, Su Q 2007 J. Alloys Compd. 432 308

    [6]

    Li P L, Wang Z J, Yang Z P, Guo Q L 2010 J. Rare Earth. 28 523

    [7]

    Guo Q F, Liao L B, Mei L F, Liu H K 2015 J. Solid State Chem. 232 102

    [8]

    Liu B, Wang T, Liu S J, Yang S S, Liu Q L 2015 Mater. Res. Bull. 64 279

    [9]

    Ropp R C, Mooney R W 1960 J. Electrochem. Soc. 107 15

    [10]

    Zhang X M, Jiang W, Pan Q, Yuan G M, Seo H J 2014 Mater. Lett. 128 89

    [11]

    Muõz F A, Rubio O J 1988 Phys. Rev. B 38 9980

    [12]

    Masai H, Hino Y, Yanagida T, Fujimoto Y, Tokuda Y 2015 Opt. Mater. Express 5 617

    [13]

    Jimenez J A 2014 J. Electron. Mater. 43 3588

    [14]

    Jimenez J A 2014 J. Non-Cryst. Solids 387 124

    [15]

    Masai H, Yamada Y, Suzuki Y, Teramura K, Kanemitsu Y, Yoko T 2013 Sci. Rep. 3 3541

    [16]

    Xiong X B, Yuan X M, Liu J C, Song J Q 2015 Acta Phys. Sin. 64 017801 (in Chinese) [熊晓波, 袁曦明, 刘金存, 宋江齐 2015 物理学报 64 017801]

    [17]

    Yi L H, Zhou L Y, Gong F Z, Lan Y H, Tong Z F, Sun J H 2010 Mater. Sci. Eng. B 172 132

    [18]

    Yang W J, Chen T M 2006 Appl. Phys. Lett. 88 101903

    [19]

    Sarver J F, Hoffman M V, Hummel F A 1961 J. Electrochem. Soc. 108 1103

    [20]

    Mendez A, Ramos F, Guerrero R, Camarillo E, Garcia U C 1998 J. Lumin. 79 269

    [21]

    Aceves R, Caldino U G, Rubio J, Camarillo E 1995 J. Lumin. 65 113

    [22]

    Kondo M, Adachi S 2013 ECS J. Solid State Sc. 2 9

    [23]

    Yang Z P, Yang G W, Wang S L, Tian J, Li P L, Li X 2008 Acta Phys. Sin. 57 581 (in Chinese) [杨志平, 杨广伟, 王少丽, 田晶, 李盼来, 李旭 2008 物理学报 57 581]

    [24]

    Xu S H, Zhu W Q 2011 Luminescence of Solid (Beijing: Tsinghua University Press) p85 (in Chinese) [许少鸿, 朱文清 2011 固体发光(北京:清华大学出版社) 第85页]

    [25]

    van Uitert L G 1971 J. Lumin. 4 1

    [26]

    Cui Y P, Hu Z F, Ye D H, Zhang W, Sheng X, Luo L, Wang Y H 2014 Chin. J. Quantum Electron. 31 641 (in Chinese) [崔跃鹏, 胡正发, 叶定华, 张伟, 盛霞, 罗莉, 王银海 2014 量子电子学报 31 641]

    [27]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841

    [28]

    Jiao H, Liao F H, Tian S J, Jing X P 2003 J. Electrochem. Soc. 150 H220

    [29]

    Zhai Y Q, Li R F, Li X, Li J H, Zheng Q 2014 J. Chin. Ceram. Soc. 42 314 (in Chinese) [翟永清, 李瑞方, 李璇, 李金航, 郑强 2014 硅酸盐学报 42 314]

  • [1]

    Shinde K N, Singh R, Dhoble S J 2014 J. Lumin. 146 91

    [2]

    Kong L, Gan S C, Hong G Y, Zhang J L 2007 J. Rare Earth. 25 692

    [3]

    Wu L Q, Zhang J B, Zhang J F, Qiu G X 1998 Chin. J. Lumin. 19 251 (in Chinese) [吴乐琦, 张建兵, 张锦芳, 裘国兴 1998 发光学报 19 251]

    [4]

    Yang Z P, Zhao F L, Li X N, Zhao J X, Lu Y J 2008 Chin. J. Lumin. 29 941

    [5]

    Wang Z L, Liang H B, Gong M L, Su Q 2007 J. Alloys Compd. 432 308

    [6]

    Li P L, Wang Z J, Yang Z P, Guo Q L 2010 J. Rare Earth. 28 523

    [7]

    Guo Q F, Liao L B, Mei L F, Liu H K 2015 J. Solid State Chem. 232 102

    [8]

    Liu B, Wang T, Liu S J, Yang S S, Liu Q L 2015 Mater. Res. Bull. 64 279

    [9]

    Ropp R C, Mooney R W 1960 J. Electrochem. Soc. 107 15

    [10]

    Zhang X M, Jiang W, Pan Q, Yuan G M, Seo H J 2014 Mater. Lett. 128 89

    [11]

    Muõz F A, Rubio O J 1988 Phys. Rev. B 38 9980

    [12]

    Masai H, Hino Y, Yanagida T, Fujimoto Y, Tokuda Y 2015 Opt. Mater. Express 5 617

    [13]

    Jimenez J A 2014 J. Electron. Mater. 43 3588

    [14]

    Jimenez J A 2014 J. Non-Cryst. Solids 387 124

    [15]

    Masai H, Yamada Y, Suzuki Y, Teramura K, Kanemitsu Y, Yoko T 2013 Sci. Rep. 3 3541

    [16]

    Xiong X B, Yuan X M, Liu J C, Song J Q 2015 Acta Phys. Sin. 64 017801 (in Chinese) [熊晓波, 袁曦明, 刘金存, 宋江齐 2015 物理学报 64 017801]

    [17]

    Yi L H, Zhou L Y, Gong F Z, Lan Y H, Tong Z F, Sun J H 2010 Mater. Sci. Eng. B 172 132

    [18]

    Yang W J, Chen T M 2006 Appl. Phys. Lett. 88 101903

    [19]

    Sarver J F, Hoffman M V, Hummel F A 1961 J. Electrochem. Soc. 108 1103

    [20]

    Mendez A, Ramos F, Guerrero R, Camarillo E, Garcia U C 1998 J. Lumin. 79 269

    [21]

    Aceves R, Caldino U G, Rubio J, Camarillo E 1995 J. Lumin. 65 113

    [22]

    Kondo M, Adachi S 2013 ECS J. Solid State Sc. 2 9

    [23]

    Yang Z P, Yang G W, Wang S L, Tian J, Li P L, Li X 2008 Acta Phys. Sin. 57 581 (in Chinese) [杨志平, 杨广伟, 王少丽, 田晶, 李盼来, 李旭 2008 物理学报 57 581]

    [24]

    Xu S H, Zhu W Q 2011 Luminescence of Solid (Beijing: Tsinghua University Press) p85 (in Chinese) [许少鸿, 朱文清 2011 固体发光(北京:清华大学出版社) 第85页]

    [25]

    van Uitert L G 1971 J. Lumin. 4 1

    [26]

    Cui Y P, Hu Z F, Ye D H, Zhang W, Sheng X, Luo L, Wang Y H 2014 Chin. J. Quantum Electron. 31 641 (in Chinese) [崔跃鹏, 胡正发, 叶定华, 张伟, 盛霞, 罗莉, 王银海 2014 量子电子学报 31 641]

    [27]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841

    [28]

    Jiao H, Liao F H, Tian S J, Jing X P 2003 J. Electrochem. Soc. 150 H220

    [29]

    Zhai Y Q, Li R F, Li X, Li J H, Zheng Q 2014 J. Chin. Ceram. Soc. 42 314 (in Chinese) [翟永清, 李瑞方, 李璇, 李金航, 郑强 2014 硅酸盐学报 42 314]

  • [1] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递. 物理学报, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [3] 熊晓波, 袁曦明, 刘金存, 宋江齐. Na2SrMg(PO4)2: Ce3+, Mn2+荧光粉的发光性质及其能量传递机理. 物理学报, 2015, 64(1): 017801. doi: 10.7498/aps.64.017801
    [4] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理. 物理学报, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [5] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [6] 罗林龄, 唐科, 朱达川, 韩涛, 赵聪. Li+和Er3+掺杂对Ba2SiO4:Eu2+发光性能的影响. 物理学报, 2013, 62(15): 157802. doi: 10.7498/aps.62.157802
    [7] 米瑞宇, 夏志国, 刘海坤. Ce3+, Mn2+共掺的Ca4Y6 (SiO4)6F2的发光性质和能量传递. 物理学报, 2013, 62(13): 137802. doi: 10.7498/aps.62.137802
    [8] 桑士晶, 吕树臣, 曲秀荣, 杨晓旭, 张丽丽. 纳米晶ZrO2:Eu3+-Bi3+的制备及Bi3+敏化Eu3+特征发射的研究. 物理学报, 2012, 61(22): 227801. doi: 10.7498/aps.61.227801
    [9] 钟瑞霞, 张家骅, 李明亚, 王晓强. Eu2+, Cr3+共掺杂的MAl12O19 (M=Ca, Sr, Ba)的发光性质及能量传递. 物理学报, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [10] 周美娇, 张加驰, 王育华. 节能灯用BaMgAl10O17:Eu2+,Mn2+荧光粉的劣化机理研究. 物理学报, 2012, 61(7): 074103. doi: 10.7498/aps.61.074103
    [11] 肖思国, 阳效良, 丁建文. Er3+/Yb3+掺杂氟硅铅酸盐微晶玻璃的上转换发光. 物理学报, 2009, 58(10): 6858-6862. doi: 10.7498/aps.58.6858
    [12] 肖思国, 阳效良, 丁建文, 颜晓红. 尺寸效应对Er3+掺杂纳米Y2O3的发光特性的影响. 物理学报, 2009, 58(1): 165-173. doi: 10.7498/aps.58.165
    [13] 吕景文, 刘 双, 肖洪亮, 郑笑秋, 李 岳, 李 峰. Cr3+/Tm3+/Ho3+共掺氟磷酸盐玻璃的制备及性能表征. 物理学报, 2008, 57(10): 6373-6380. doi: 10.7498/aps.57.6373
    [14] 杨志平, 杨广伟, 王少丽, 田 晶, 李盼来, 李 旭. Eu2+,Mn2+在BaZnP2O7中的发光及Eu2+→Mn2+能量传递. 物理学报, 2008, 57(1): 581-585. doi: 10.7498/aps.57.581
    [15] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递. 物理学报, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [16] 石冬梅, 张勤远, 杨钢锋, 姜中宏. Tm3+/Ho3+共掺镓铋酸盐玻璃1.47μm发光特性和能量传递的研究. 物理学报, 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [17] 杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭. 用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2:Eu2+,Mn2+的发光性质. 物理学报, 2007, 56(1): 546-550. doi: 10.7498/aps.56.546
    [18] 符史流, 尹 涛, 丁球科, 赵韦人. Eu3+掺杂的Sr2CeO4发光材料的光致发光研究. 物理学报, 2006, 55(9): 4940-4945. doi: 10.7498/aps.55.4940
    [19] 王殿元, 谢平波, 张慰萍, 楼立人, 夏上达. 稀土离子发光体系中能量传递和迁移模型的研究. 物理学报, 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
    [20] 李丹, 吕少哲, 陈宝玖, 王海宇, 唐波, 张家骅, 侯尚公, 黄世华. Y2O3:Eu纳米晶中能量传递相互作用的研究. 物理学报, 2001, 50(5): 933-937. doi: 10.7498/aps.50.933
计量
  • 文章访问数:  6519
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-19
  • 修回日期:  2015-09-29
  • 刊出日期:  2015-12-05

/

返回文章
返回