搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌镁酸铅-钛酸铅铁电阴极电子发射特性

王秋萍 冯玉军 徐卓 成鹏飞 凤飞龙

引用本文:
Citation:

铌镁酸铅-钛酸铅铁电阴极电子发射特性

王秋萍, 冯玉军, 徐卓, 成鹏飞, 凤飞龙

Electron emission from Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric cathode

Wang Qiu-Ping, Feng Yu-Jun, Xu Zhuo, Cheng Peng-Fei, Feng Fei-Long
PDF
导出引用
  • 研究了铌镁酸铅-钛酸铅铁电材料的铁电、介电性能对阴极发射阈值电压的影响, 以及铁电阴极发射电流与激励脉冲电压和抽取电压之间的关系, 并分析了其发射机理. 结果表明, 室温介电常数高、极化强度变化量大的弛豫铁电体0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3具有较小的发射阈值电压; 铁电阴极电子发射与快极化反转和等离子体的形成有关; 由极化反转所致电子发射的自发射电流随激励脉冲电压的增大呈幂律增长关系, 其发射电流开始于激励脉冲电压的下降沿; 在抽取电压较大时, 发射电流随抽取电压的增大呈线性增长关系, 说明大电流主要取决于抽取电压; 其发射电流开始于激励脉冲电压的上升沿, 与“三介点”处的场增强效应和等离子体的形成有关; 当抽取电压为2500 V 时, 得到的发射电流幅值为210 A, 相应的电流密度为447 A/cm2.
    (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 materials near the morphotropic phase boundary are selected for tentative electron emission experiments due to their excellent piezoelectric and ferroelectric properties and relatively high dielectric constants. The influences of ferroelectric and dielectric properties of ferroelectric cathode material on its threshold voltage are studied. The relationship between emission current and triggering voltage is investigated, and the relationship between emission current and extracting voltage is studied as well. The electron emission mechanism is also analyzed. The results show that emission threshold voltage of the relaxation ferroelectric 0.9Pb(Mg1/3Nb2/3) O3-0.1PbTiO3 is smaller due to its high dielectric constant at room temperature and large polarization variation. Low threshold voltage means low power consumption. This is an important factor to be considered in actual application for ferroelectric cathode and it has an important reference value. Electron emission is associated with fast polarization reversal and the formation of the plasma. The self-emission current starts on the falling edge of the triggering voltage pulse, which means that it is caused by polarization reversal. The amplitude of the self-emission current grows exponentially with the increase of triggering voltage. The amplitude of emission current shows a linear growth with the increase of extracting voltage when it is larger. It indicates that large current is determined mainly by extracting voltage. Larger current needs larger extracting voltage. The emission current starts on the rising edge of the triggering voltage pulse. It is associated with the field enhancement effect near “three interface points” and the formation of the plasma. An emission current of 210 A is obtained from the ferroelectric cathode under an extracting voltage of 2500 V, and the corresponding current density is 447 A/cm2.
      通信作者: 王秋萍, wangjup@163.com
    • 基金项目: 国家自然科学基金(批准号: 51277138, 11204227)和西安工程大学博士基金(批准号: BS1436)资助的课题.
      Corresponding author: Wang Qiu-Ping, wangjup@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51277138, 11204227) and the Doctoral Funds of Xi'an Polytechnic University, China (Grant No. BS1436).
    [1]

    Gundel H, Riege H, Handerek J, Zioutas K 1989 Appl. Phys. Lett. 54 2071

    [2]

    Rosenman G, Shur D, Krasik Y E, Dunaevsky A 2000 J. Appl. Phys. 88 6109

    [3]

    Krasik Y E, Dunaevsky A, Krokhmal A, Felsteiner J, Gunin A V, Pegel I V, Korovin S D 2001 J. Appl. Phys. 89 2379

    [4]

    Sheng Z X, Feng Y J, Huang X, Xu Z, Sun X L 2008 Acta Phys. Sin. 57 4590 (in Chinese) [盛兆玄, 冯玉军, 黄璇, 徐卓, 孙新利 2008 物理学报 57 4590]

    [5]

    Gundel H, Hafiderek J, Riege H 1991 Appl. Phys. 69 975

    [6]

    Chen S T, Zheng S X, Zhu Z Q, Dong X L, Tang C X 2006 Nucl. Instr. Meth. Phys. Res. A 566 662

    [7]

    Gundel H, Riege H, Wilson E J N, Zioutas K 1989 Ferroelectrics 100 1

    [8]

    Rosenblum B, Braunlich P, Carrico J P 1974 Appl. Phys. Lett. 25 17

    [9]

    Rosenman G, Pechorskii V J E 1980 Sov. Tech. Phys. Lett. 6 661

    [10]

    Rozenman G I, Okhapkin V A, Chepelev Y L, Shur V Ya 1984 JETP Lett. 39 477

    [11]

    Ivers J D, Schachter L, Nation J A, Kerslick S, Advani R 1993 J. Appl. Phys. 73 2667

    [12]

    Zhang W M, Huebne W 1998 J. Appl. Phy. 83 6034

    [13]

    Hayashi Ya, Flechtner D, Hotta E 2002 J. Phys. D: Appl. Phys. 35 281

    [14]

    Gundel H, Riege H, Wilson E J N, Handerek J, Zioutas K 1989 Nucl. Instrum. Methods Phys. Res. A 280 1

    [15]

    Dunaevsky A, Fisch N J 2004 J. Appl. Phys. 95 4621

    [16]

    Chen S T, Dong X L, Zheng S X, Zhu Z Q, Tang C X 2007 Ceram. Int. 33 1155

    [17]

    Huang X D, Feng Y J, Tang S 2012 Acta Phys. Sin. 61 087702 (in Chinese) [黄旭东, 冯玉军, 唐帅 2012 物理学报 61 087702]

    [18]

    Liu Y, Louc X J, Xu Z, Heb H L, FengY J 2014 Ceram. Int. 40 11057

    [19]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [20]

    Service R E 1997 Science 275 1878

    [21]

    Huang X, Feng Y J, Cui J, Sheng Z X 2009 J. Phys. 152 012045

    [22]

    Stadler H L, Zachmanids P L 1963 J. Appl. Phys. 34 3255

    [23]

    Sheng Z X 2008 Ph D. Dissertation (Xi'an: The second Artillery Engineering Institute) (in Chinese) [盛兆玄 2008 博士学位论文 (西安: 第二炮兵工程学院)]

  • [1]

    Gundel H, Riege H, Handerek J, Zioutas K 1989 Appl. Phys. Lett. 54 2071

    [2]

    Rosenman G, Shur D, Krasik Y E, Dunaevsky A 2000 J. Appl. Phys. 88 6109

    [3]

    Krasik Y E, Dunaevsky A, Krokhmal A, Felsteiner J, Gunin A V, Pegel I V, Korovin S D 2001 J. Appl. Phys. 89 2379

    [4]

    Sheng Z X, Feng Y J, Huang X, Xu Z, Sun X L 2008 Acta Phys. Sin. 57 4590 (in Chinese) [盛兆玄, 冯玉军, 黄璇, 徐卓, 孙新利 2008 物理学报 57 4590]

    [5]

    Gundel H, Hafiderek J, Riege H 1991 Appl. Phys. 69 975

    [6]

    Chen S T, Zheng S X, Zhu Z Q, Dong X L, Tang C X 2006 Nucl. Instr. Meth. Phys. Res. A 566 662

    [7]

    Gundel H, Riege H, Wilson E J N, Zioutas K 1989 Ferroelectrics 100 1

    [8]

    Rosenblum B, Braunlich P, Carrico J P 1974 Appl. Phys. Lett. 25 17

    [9]

    Rosenman G, Pechorskii V J E 1980 Sov. Tech. Phys. Lett. 6 661

    [10]

    Rozenman G I, Okhapkin V A, Chepelev Y L, Shur V Ya 1984 JETP Lett. 39 477

    [11]

    Ivers J D, Schachter L, Nation J A, Kerslick S, Advani R 1993 J. Appl. Phys. 73 2667

    [12]

    Zhang W M, Huebne W 1998 J. Appl. Phy. 83 6034

    [13]

    Hayashi Ya, Flechtner D, Hotta E 2002 J. Phys. D: Appl. Phys. 35 281

    [14]

    Gundel H, Riege H, Wilson E J N, Handerek J, Zioutas K 1989 Nucl. Instrum. Methods Phys. Res. A 280 1

    [15]

    Dunaevsky A, Fisch N J 2004 J. Appl. Phys. 95 4621

    [16]

    Chen S T, Dong X L, Zheng S X, Zhu Z Q, Tang C X 2007 Ceram. Int. 33 1155

    [17]

    Huang X D, Feng Y J, Tang S 2012 Acta Phys. Sin. 61 087702 (in Chinese) [黄旭东, 冯玉军, 唐帅 2012 物理学报 61 087702]

    [18]

    Liu Y, Louc X J, Xu Z, Heb H L, FengY J 2014 Ceram. Int. 40 11057

    [19]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [20]

    Service R E 1997 Science 275 1878

    [21]

    Huang X, Feng Y J, Cui J, Sheng Z X 2009 J. Phys. 152 012045

    [22]

    Stadler H L, Zachmanids P L 1963 J. Appl. Phys. 34 3255

    [23]

    Sheng Z X 2008 Ph D. Dissertation (Xi'an: The second Artillery Engineering Institute) (in Chinese) [盛兆玄 2008 博士学位论文 (西安: 第二炮兵工程学院)]

  • [1] 张天富, 司洋洋, 黎意杰, 陈祖煌. 锆酸铅基反铁电薄膜研究现状与展望. 物理学报, 2023, 72(9): 097704. doi: 10.7498/aps.72.20230389
    [2] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强. 物理学报, 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [3] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [4] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [5] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性. 物理学报, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [6] 虞洋, 赵永涛, 王瑜玉, 王兴, 程锐, 周贤明, 李永峰, 刘世东, 雷瑜, 孙渊博, 曾利霞. 近玻尔速度Ne2+离子穿过碳膜引起的电子发射. 物理学报, 2013, 62(15): 157901. doi: 10.7498/aps.62.157901
    [7] 陈传文, 项阳. 铌锌酸铅-钛酸铅薄层中Lamb波模式的交叉特性. 物理学报, 2012, 61(10): 107701. doi: 10.7498/aps.61.107701
    [8] 黄旭东, 冯玉军, 唐帅. 掺镧锆锡钛酸铅陶瓷极化强度变化量对电子发射电流强度的影响. 物理学报, 2012, 61(8): 087702. doi: 10.7498/aps.61.087702
    [9] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射. 物理学报, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [10] 王建国, 徐忠锋, 赵永涛, 王瑜玉, 李德慧, 赵迪, 肖国青. 反冲原子对低速离子轰击Si表面时电子发射产额的影响. 物理学报, 2010, 59(11): 7803-7807. doi: 10.7498/aps.59.7803
    [11] 张崇辉, 徐卓, 高俊杰, 王斌科. 等静压下0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3陶瓷的介电性能研究. 物理学报, 2009, 58(9): 6500-6505. doi: 10.7498/aps.58.6500
    [12] 张琳丽, 徐卓, 冯玉军, 盛兆玄. 负脉冲激励下PLZST电子发射特征及发射机理研究. 物理学报, 2009, 58(6): 4249-4253. doi: 10.7498/aps.58.4249
    [13] 赵晓英, 刘世建, 褚君浩, 戴 宁, 胡古今. 锆钛酸铅双层膜的铁电及光学特性研究. 物理学报, 2008, 57(9): 5968-5972. doi: 10.7498/aps.57.5968
    [14] 盛兆玄, 冯玉军, 黄 璇, 徐 卓, 孙新利. 反铁电陶瓷的强电子发射特性研究. 物理学报, 2008, 57(7): 4590-4595. doi: 10.7498/aps.57.4590
    [15] 刘廷禹, 张启仁, 庄松林. 钨酸铅晶体中与铅空位有关的电子结构和色心模型研究. 物理学报, 2006, 55(6): 2914-2921. doi: 10.7498/aps.55.2914
    [16] 胡大治, 沈明荣. 淀积气压对脉冲激光淀积La掺杂钛酸铅薄膜介电性能的影响. 物理学报, 2004, 53(12): 4405-4409. doi: 10.7498/aps.53.4405
    [17] 冯玉军, 徐 卓, 魏晓勇, 姚 熹. 强电场作用下反铁电锆钛酸铅的介电行为研究. 物理学报, 2003, 52(5): 1255-1259. doi: 10.7498/aps.52.1255
    [18] 卢励吾, 张砚华, 徐遵图, 徐仲英, 王占国, J.Wang, WeikunGe. 快速热处理对应变InGaAs/GaAs单量子阱激光二极管电子发射和DX中心的影响. 物理学报, 2002, 51(2): 367-371. doi: 10.7498/aps.51.367
    [19] 冯玉军, 姚 熹, 徐 卓. 改性锆钛酸铅温度诱导相变的热释电性. 物理学报, 2000, 49(8): 1606-1610. doi: 10.7498/aps.49.1606
    [20] 程忠阳, 姚熹, 张良莹. 弛豫型铁电体铌镁酸铅陶瓷的玻璃化行为研究. 物理学报, 1996, 45(6): 1026-1032. doi: 10.7498/aps.45.1026
计量
  • 文章访问数:  5706
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-30
  • 修回日期:  2015-10-05
  • 刊出日期:  2015-12-05

/

返回文章
返回