搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强

王志青 姚晓萍 沈杰 周静 陈文 吴智

引用本文:
Citation:

锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强

王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智

Micromechanism of ferroelectric fatigue and enhancement of fatigue resistance of lead zirconate titanate thin films

Wang Zhi-Qing, Yao Xiao-Ping, Shen Jie, Zhou Jing, Chen Wen, Wu Zhi
PDF
HTML
导出引用
  • 铁电随机存储器(ferroelectric random access memory, FeRAM)因其卓越的数据存储性能与非易失性存储特性等优势而备受关注, 但其自身固有的铁电疲劳失效问题制约了FeRAM进一步的发展和商业化应用. FeRAM的疲劳失效与铁电薄膜的畴壁运动密切相关, 但其内在疲劳机理仍有待深入研究. 本文采用基于密度泛函理论(density functional theory, DFT)的第一性原理计算方法, 研究了锆钛酸铅 (Pb(Zr0.52Ti0.48)O3, PZT) 的疲劳失效机理并提出了增强其耐疲劳性能的方法. 计算结果表明: PZT中氧空位与180°畴壁运动的耦合是其铁电疲劳的内在原因, PZT铁电薄膜中越靠近畴壁的地方越容易形成氧空位, 畴壁处大量氧空位对畴壁运动的“钉扎”作用使畴壁迁移困难, 抑制了其极化反转最终导致了铁电疲劳; Ba(Mg1/3Nb2/3)O3 (BMN) 缓冲层的存在可吸收PZT中的氧空位, 降低畴壁处的氧空位浓度, 提升其耐疲劳性能. 实验结果表明, 经过1010次极化反转后, PZT 铁电薄膜的剩余极化值降低了51%, 而PZT/BMN薄膜的剩余极化值仅降低了18%; 经过1012次极化反转后, PZT/BMN 薄膜的剩余极化值仍保持有82%并持续稳定. 以上结果表明, BMN缓冲层引入确实能提高PZT铁电薄膜的耐疲劳性, 有望满足FeRAM商业化应用的需求.
    Ferroelectric random access memory (FeRAM) has been regarded as a promising technology for next-generation nonvolatile storage due to its excellent data storage performance and nonvolatile storage characteristics. However, fatigue degradation properties seriously impede the development and large-scale commercial use of FeRAM. In this paper, the interaction mechanism and enhancement of ferroelectric fatigue in lead zirconate titanate (PZT) thin film are investigated by the first-principles calculations (DFT). Theoretical calculations suggest that the coupling between oxygen vacancies and 180° domain walls in PZT is responsible for ferroelectric fatigue. Oxygen vacancies are more likely to be formed closer to domain wall, the “pinning” between oxygen vacancies and domain wall makes the migration of domain wall difficult, resulting in the suppression of polarization reversal and ultimately fatigue in ferroelectric thin film. The insertion of Ba(Mg1/3Nb2/3)O3 (BMN) can absorb the oxygen vacancies in PZT and reduce the concentration of oxygen vacancies, and in doing so, the ferroelectric fatigue problem caused by the “pinning” effect of the oxygen vacancies can be eliminated. Moreover, the PZT thin films are deposited on Pt/Ti/SiO2/Si(100) by the sol-gel method with using BMN buffer layer. The remnant polarization (Pr) of PZT film decreases by 51% and the PZT/BMN film remains 85% after 1010 cycles. Furthermore, it keeps stable even up to 1012 cycles. This paper demonstrates that the PZT/BMN film with excellent ferroelectric and fatigue endurance possesses the promising applications in FeRAM.
      通信作者: 周静, zhoujing@whut.edu.cn ; 吴智, wuzhi0549@163.com
    • 基金项目: 国家自然科学基金(批准号: 51572205, 51802093)、国家重点研发计划(批准号: 2016YFB0303904)、教育部装备预研联合基金(批准号: 6141A02022262)、中央高校基础研究经费(批准号: 2018III019, 2019IVA108, 2020III021)和湖南省教育厅科学研究项目(批准号: 20B161)资助的课题
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn ; Wu Zhi, wuzhi0549@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572205, 51802093), the State's Key Project of Research and Development Plan, China (Grant No. 2016YFB0303904), the Joint Fund of Ministry of Education for Pre-research of Equipment, China (Grant No. 6141A02022262), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2018III019, 2019IVA108, 2020III021), and the Scientific Research Project of Hunan Education Department, China(Grant No. 20B161)
    [1]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181Google Scholar

    [2]

    Boni A G, Chirila C, Pasuk I, Negrea R, Pintilie L, Pintilie L 2017 Phys. Rev. Appl. 8 034035Google Scholar

    [3]

    陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 物理学报 69 137701Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [4]

    吕笑梅, 黄凤珍, 朱劲松 2020 物理学报 69 127704Google Scholar

    Lü X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [5]

    Wang Z Q, Liu Y L, Shen J, Chen W, Miao J, Li A, L K, Zhou J 2020 Sci. China Mater. 63 2497Google Scholar

    [6]

    Deng C, He C, Chen Z, Chen H, Mao R, Liu Y, Zhu K, Gao H, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [7]

    Wang Z Q, Chen B B, Shen J, Chen W, Liu Y L, Gong S K, Zhou J 2020 Chem. J. Chinese Universities 41 1908Google Scholar

    [8]

    Zhong H, Wen Y, Zhao Y, Zhang Q, Huang Q, Chen Y, Cai J, Zhang X, Li R, Bai L, Kang S, Yan S, Tian Y 2019 Adv. Funct. Mater. 29 1805380Google Scholar

    [9]

    Jiang J, Bai Z L, Chen Z H, He L, Zhang D W, Zhang Q H, Shi J A, Park M H, Scott J F, Hwang C S, Jiang A Q 2018 Nature Mater. 17 2Google Scholar

    [10]

    Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L, Yu P, Nan C 2018 Nature Nanotech. 13 947Google Scholar

    [11]

    Noguchi Y, Matsuo H, Kitanaka Y, Miyayama M 2019 Sci. Rep. 9 4225Google Scholar

    [12]

    Warren W L, Dimos D, Tuttle B A, Nasby R D, Pike G E 1994 Appl. Phys. Lett. 65 87185Google Scholar

    [13]

    Colla E L, Tagantsev A K, Taylor D V, Kholkin A L 2006 Integr. Ferroelectr. 341 3Google Scholar

    [14]

    Grossmann M, Lohse O, Bolten D, Waser R, Hartner W, Kastner M, Schindler G 2000 Appl. Phys. Lett. 76 363Google Scholar

    [15]

    Tagantsev A K, Stolichnov I, Colla E L, Setter N 2001 J. Appl. Phys. 90 1387Google Scholar

    [16]

    Scott J F, Dawber M 2000 Appl. Phys. Lett. 76 25Google Scholar

    [17]

    Jiang A Q, Lin Y Y, Tang T A 2007 J. Appl. Phys. 102 034102Google Scholar

    [18]

    Dawber M, Scott J F 2000 Appl. Phys. Lett. 76 1060Google Scholar

    [19]

    Stolichnov I, Tagantsev A, Colla E, Gentil S, Hiboux S, Baborowski J, Muralt P, Setter N 2000 J. Appl. Phys., 88 2154Google Scholar

    [20]

    Tagantsev A K, Stolichnov I A 1999 Appl. Phys. Lett. 74 1326Google Scholar

    [21]

    Du X, Chen I W 1998 J. Appl. Phys. 83 7789Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Wu Z, Zhou J, Chen W, Shen J, Hu L, Lü C 2015 J. Sol-Gel Sci. Techn. 75 551Google Scholar

    [24]

    Placeres Jiménez R, Pedro Rino J, Marino Gonçalves A, Antonio Eiras J 2013 Appl. Phys. Lett. 103 112901Google Scholar

    [25]

    Hayashi M 1972 J. Phys. Soc. Japan 33 616Google Scholar

    [26]

    Landauer R 1957 J. Appl. Phys. 28 227Google Scholar

    [27]

    Zhi Y, Liu D, Sun J, Yan A, Zhou Y, Dai E, Liu L, Qu W 2009 J. Appl. Phys. 105 024106Google Scholar

    [28]

    Shin Y H, Grinberg I, Chen I W, Rappe A M 2007 Nature 449 881Google Scholar

    [29]

    Gopalan V, Mitchell T E 1998 J. Appl. Phys. 83 941Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [31]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [32]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [33]

    Lim T L, Nazarov M, Yoon T L, Low L C, Fauzi M N 2014 Phys. Scripta 89 095102Google Scholar

    [34]

    Okamoto S, Millis A J, Spaldin N A 2006 Phys. Rev. Lett. 97 056802Google Scholar

    [35]

    Mizokawa T, Fujimori A 1995 Phys. Rev. B 51 18Google Scholar

    [36]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111Google Scholar

    [37]

    Yang Q, Cao J X, Zhou Y C, Zhang Y, Ma Y, Lou X J 2013 Appl. Phys. Lett. 103 141101Google Scholar

    [38]

    Cohen R E 1992 Nature 358 136Google Scholar

    [39]

    Cohen R E, Krakauer H 1992 Ferroelectrics 136 1Google Scholar

  • 图 1  包含8个钙钛矿单胞的超晶胞结构

    Fig. 1.  Supercell structure containing 8 unit cells.

    图 2  NEB方法计算畴壁迁移中的初始态和终止态

    Fig. 2.  NEB method to calculate initial state and ending state in domain wall migration.

    图 3  (a) PZT/BMN薄膜的结构示意图; (b) PZT, (c) BMN和(d) PZT/BMN薄膜的XRD图谱

    Fig. 3.  (a) Schematic of PZT/BMN films; XRD patterns of (b) PZT, (c) BMN, and (d) PZT BMN films.

    图 4  (a)无BMN缓冲层和(b)有BMN缓冲层的PZT薄膜表面; (c)无BMN缓冲层和(d)有BMN缓冲层的薄膜断面FESEM图像

    Fig. 4.  FESEM images of the surface PZT films (a) without or (b) with BMN buffer layer; cross-section of films (c) without or (d) with BMN buffer layer.

    图 5  PZT薄膜和PZT/BMN薄膜的 (a)电滞回线和(b)疲劳性能

    Fig. 5.  (a) Hysteresis loop and (b) fatigue failure of PZT and PZT/BMN films.

    图 6  四方相的PZT (a)晶体结构; (b)能带结构图和PDOS图

    Fig. 6.  (a) Crystal structures; (b) band structure and PDOS of tetragonal PZT.

    图 7  PZT畴壁运动过程中的能量变化图

    Fig. 7.  Diagram of energy changes during PZT domain wall motion.

    图 8  PZT中不同类型氧空位的能量随畴壁与氧空位之间的距离变化图

    Fig. 8.  The energy variations of different types of oxygen vacancies in PZT with the distance between the domain wall and the oxygen vacancies.

    图 9  氧空位下PZT中畴壁迁移过程中的能量变化图

    Fig. 9.  Energy change diagram during the migration of domain walls in PZT with oxygen vacancies.

    图 10  氧空位在PZT/BMN界面迁移过程中的能量变化图

    Fig. 10.  Energy change diagram of oxygen vacancies during the migration process at PZT/BMN interface.

    图 11  体系耐疲劳性增强的机理图 (a), (c)引入BMN 缓冲层前后的体系初始状态; (b), (d) 引入BMN缓冲层前后的体系发生严重疲劳后的状态 (图中圆点表示氧空位)

    Fig. 11.  The mechanism diagram of system fatigue resistance enhancement: (a), (c) The initial state of the system before and after the introduction of the BMN buffer layer; (b), (d) the state of the system before and after the introduction of the BMN buffer layer after severe fatigue (The dots in the figure indicate oxygen vacancies).

    表 1  具有不同PZT单胞数目的体系的畴壁能

    Table 1.  Domain wall energy of systems with different numbers of PZT unit cells.

    n246810
    ${E_{ {\rm{DW} } } }/({\rm{mJ} } \cdot { {\rm{m} }^{ - 2} })$108.5114.9116.0111.4109.6
    注: 其中 n 表示超晶胞中单胞的数量.
    下载: 导出CSV
  • [1]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181Google Scholar

    [2]

    Boni A G, Chirila C, Pasuk I, Negrea R, Pintilie L, Pintilie L 2017 Phys. Rev. Appl. 8 034035Google Scholar

    [3]

    陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 物理学报 69 137701Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [4]

    吕笑梅, 黄凤珍, 朱劲松 2020 物理学报 69 127704Google Scholar

    Lü X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [5]

    Wang Z Q, Liu Y L, Shen J, Chen W, Miao J, Li A, L K, Zhou J 2020 Sci. China Mater. 63 2497Google Scholar

    [6]

    Deng C, He C, Chen Z, Chen H, Mao R, Liu Y, Zhu K, Gao H, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [7]

    Wang Z Q, Chen B B, Shen J, Chen W, Liu Y L, Gong S K, Zhou J 2020 Chem. J. Chinese Universities 41 1908Google Scholar

    [8]

    Zhong H, Wen Y, Zhao Y, Zhang Q, Huang Q, Chen Y, Cai J, Zhang X, Li R, Bai L, Kang S, Yan S, Tian Y 2019 Adv. Funct. Mater. 29 1805380Google Scholar

    [9]

    Jiang J, Bai Z L, Chen Z H, He L, Zhang D W, Zhang Q H, Shi J A, Park M H, Scott J F, Hwang C S, Jiang A Q 2018 Nature Mater. 17 2Google Scholar

    [10]

    Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L, Yu P, Nan C 2018 Nature Nanotech. 13 947Google Scholar

    [11]

    Noguchi Y, Matsuo H, Kitanaka Y, Miyayama M 2019 Sci. Rep. 9 4225Google Scholar

    [12]

    Warren W L, Dimos D, Tuttle B A, Nasby R D, Pike G E 1994 Appl. Phys. Lett. 65 87185Google Scholar

    [13]

    Colla E L, Tagantsev A K, Taylor D V, Kholkin A L 2006 Integr. Ferroelectr. 341 3Google Scholar

    [14]

    Grossmann M, Lohse O, Bolten D, Waser R, Hartner W, Kastner M, Schindler G 2000 Appl. Phys. Lett. 76 363Google Scholar

    [15]

    Tagantsev A K, Stolichnov I, Colla E L, Setter N 2001 J. Appl. Phys. 90 1387Google Scholar

    [16]

    Scott J F, Dawber M 2000 Appl. Phys. Lett. 76 25Google Scholar

    [17]

    Jiang A Q, Lin Y Y, Tang T A 2007 J. Appl. Phys. 102 034102Google Scholar

    [18]

    Dawber M, Scott J F 2000 Appl. Phys. Lett. 76 1060Google Scholar

    [19]

    Stolichnov I, Tagantsev A, Colla E, Gentil S, Hiboux S, Baborowski J, Muralt P, Setter N 2000 J. Appl. Phys., 88 2154Google Scholar

    [20]

    Tagantsev A K, Stolichnov I A 1999 Appl. Phys. Lett. 74 1326Google Scholar

    [21]

    Du X, Chen I W 1998 J. Appl. Phys. 83 7789Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Wu Z, Zhou J, Chen W, Shen J, Hu L, Lü C 2015 J. Sol-Gel Sci. Techn. 75 551Google Scholar

    [24]

    Placeres Jiménez R, Pedro Rino J, Marino Gonçalves A, Antonio Eiras J 2013 Appl. Phys. Lett. 103 112901Google Scholar

    [25]

    Hayashi M 1972 J. Phys. Soc. Japan 33 616Google Scholar

    [26]

    Landauer R 1957 J. Appl. Phys. 28 227Google Scholar

    [27]

    Zhi Y, Liu D, Sun J, Yan A, Zhou Y, Dai E, Liu L, Qu W 2009 J. Appl. Phys. 105 024106Google Scholar

    [28]

    Shin Y H, Grinberg I, Chen I W, Rappe A M 2007 Nature 449 881Google Scholar

    [29]

    Gopalan V, Mitchell T E 1998 J. Appl. Phys. 83 941Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [31]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [32]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [33]

    Lim T L, Nazarov M, Yoon T L, Low L C, Fauzi M N 2014 Phys. Scripta 89 095102Google Scholar

    [34]

    Okamoto S, Millis A J, Spaldin N A 2006 Phys. Rev. Lett. 97 056802Google Scholar

    [35]

    Mizokawa T, Fujimori A 1995 Phys. Rev. B 51 18Google Scholar

    [36]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111Google Scholar

    [37]

    Yang Q, Cao J X, Zhou Y C, Zhang Y, Ma Y, Lou X J 2013 Appl. Phys. Lett. 103 141101Google Scholar

    [38]

    Cohen R E 1992 Nature 358 136Google Scholar

    [39]

    Cohen R E, Krakauer H 1992 Ferroelectrics 136 1Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成. 物理学报, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [5] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [6] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [7] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [8] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [9] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [10] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [12] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [13] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [14] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [15] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [16] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [17] 杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳. 氧含量对CaCu3Ti4O12巨介电常数和介电过程的影响. 物理学报, 2012, 61(19): 197702. doi: 10.7498/aps.61.197702
    [18] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [19] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
计量
  • 文章访问数:  6288
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 修回日期:  2021-02-27
  • 上网日期:  2021-07-12
  • 刊出日期:  2021-07-20

/

返回文章
返回