搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成

史晓红 陈京金 曹昕睿 吴顺情 朱梓忠

引用本文:
Citation:

富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成

史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠

Formation of oxygen vacancies in Li-rich Mn-based cathode material Li1.167Ni0.167Co0.167Mn0.5O2

Shi Xiao-Hong, Chen Jing-Jin, Cao Xin-Rui, Wu Shun-Qing, Zhu Zi-Zhong
PDF
HTML
导出引用
  • 基于密度泛函理论的第一性原理方法, 计算了锂离子电池富锂锰基三元正极材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成, 讨论了环境温度、压强以及点缺陷的存在对氧空位形成能的影响, 还讨论了氧空位对材料容量的影响. 结果表明, 氧空位的形成能随温度的升高而下降, 随氧分压的降低而降低. 对于带电氧空位($ {\mathrm{V}}_{\mathrm{O}}^{+1} $, $ {\mathrm{V}}_{\mathrm{O}}^{+2} $), 空位形成能随着费米能级的升高而增加. 研究还表明, 氧空位的形成对Li1.167Ni0.167Co0.167Mn0.5O2材料中电荷密度分布的影响是相当局域的, $ {\mathrm{V}}_{\mathrm{O}}^{0} $氧空位形成后仅在氧空位附近的Mn离子周围出现明显的电荷密度的重新分布. 此外, 计算了氧空位附近存在阳离子空位以及替位点缺陷对氧空位形成能的影响. 结果显示, Mn空位的存在能够明显地促进氧空位的产生. 另外, 当Mn被Mo或Fe原子替位时, 氧空位的产生会受到抑制.
    Using the first-principles method based on the density functional theory, the oxygen vacancy formations in the lithium-rich manganese-based ternary cathode material Li1.167Ni0.167Co0.167Mn0.5O2 are calculated. The changes of oxygen vacancy formation energy with temperature, oxygen partial pressure and point defects in the material are discussed, meanwhile, the effect of oxygen vacancies on the capacity is also discussed. The calculation results show that the increase of temperature and the decrease of oxygen partial pressure can lead the formation energy of an oxygen vacancy to decline. For the charged oxygen vacancies ($ {\mathrm{V}}_{\mathrm{O}}^{+1} $, $ {\mathrm{V}}_{\mathrm{O}}^{+2} $), the formation energy of an O-vacancy increases with Fermi level increasing. It is also found that the presence of an oxygen vacancy will trigger off a very local charge density redistributions, mainly around the neighboring Mn ions next to the O-vacancy. Furthermore, the effects of point defects, including cation vacancies and substitutional defects in the vicinity of the O-vacancy, on the formation energy of O-vacancy are also calculated. The results show that the presence of Mn vacancy near the O-vacancy is beneficial to the formation of the O-vacancy. In addition, the formation of oxygen vacancy is suppressed when the Mn atoms near the O-vacancy are substituted by the Mo or Fe atoms.
      通信作者: 朱梓忠, zzhu@xmu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11874307, 22073076)资助的课题.
      Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874307, 22073076).
    [1]

    Dunn B, Kamath H, Tarascon J M 2011 Science 334 928Google Scholar

    [2]

    Goodenough J B, Kim Y 2010 Chem. Mater. 22 587Google Scholar

    [3]

    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D 2011 Energy Environ. Sci. 4 3243Google Scholar

    [4]

    Nitta N, Wu F, Lee J T, Yushin G 2015 Mater. Today 18 252Google Scholar

    [5]

    Mizushima K, Jones P, Wiseman P, Goodenough J B 1981 Solid State Ionics 3 171

    [6]

    Wang H, Jang Y I, Huang B Y, Sadoway D R, Chiang Y M 1999 J. Electrochem. Soc. 146 473Google Scholar

    [7]

    Huang H, Yin S C, Nazar L F 2001 Electrochem. Solid. St. 4 A170Google Scholar

    [8]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303Google Scholar

    [9]

    Yuan L X, Wang Z H, Zhang W X, Hu X L, Chen J T, Huang Y H, Goodenough J B 2011 Energy Environ. Sci. 4 269Google Scholar

    [10]

    Liu J L, Hou M Y, Yi J, Guo S S, Wang C X, Xia Y Y 2014 Energy Environ. Sci. 7 705Google Scholar

    [11]

    Zuo W H, Luo M Z, Liu X S, Wu J, Liu H D, Li J, Winter M, Fu R Q, Yang W L, Yang Y 2020 Energy Environ. Sci. 13 4450Google Scholar

    [12]

    Koga H, Croguennec L, Mannessiez P, M Ménétrier, Delmas C 2012 J. Phys. Chem. C. 116 13497Google Scholar

    [13]

    He Z J, Wang Z X, Huang Z M, Chen H, Li X H, Guo H J 2015 J. Mater. Chem. A. 3 16817Google Scholar

    [14]

    Sung Nam Lim, Jung Yoon Seo, Dae Soo Jung 2015 J. Alloy. Compd. 623 55Google Scholar

    [15]

    Lai X W, Hu G R, Peng Z D, Tong H, Lu Y, Wang Y Z, Qi X Y, Xue Z C, Huang Y, Du K 2019 J. Power. Sources. 431 144Google Scholar

    [16]

    Qiu B, Zhang M H, Wu L J, Wang J, Xia Y G, Qian D N 2016 Nat. Commun. 7 1

    [17]

    Zhang B, Wang L, Bai F, Xiao P, Zhang B, Chen X, Sun Jie, Yang W S 2019 Dalton. T. 48 3209Google Scholar

    [18]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [21]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [22]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [23]

    Xiao R J, Li H, Chen L Q 2012 Chem. Mater. 24 4242Google Scholar

    [24]

    Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Phys. Rev. B 84 045115Google Scholar

    [25]

    Nakamura T, Ohta K, Hou X Y, Kimura Y, Tsuruta K, Tamenori Y, Aso R, Yoshida H, Amezawa K 2021 J. Mater. Chem. A 9 3657Google Scholar

    [26]

    Hu W, Wang H W, Luo W W, Xu B, Ouyang C Y 2020 Solid State Ionics 347 115257Google Scholar

    [27]

    Hashimoto T, Moriwake H 2008 Phys. Rev. B 78 092106Google Scholar

    [28]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406Google Scholar

    [29]

    Wu S Q, Cai N L, Zhu Z Z, Yang Y 2008 Electrochim. Acta 53 7915Google Scholar

    [30]

    Turner D E, Zhu Z Z, Chan C T, Ho K M 1997 Phys. Rev. B 55 13842Google Scholar

    [31]

    Zhang W, Hou Z F 2014 J. Appl. Phys. 115 124104Google Scholar

  • 图 1  (a) Li1.167Ni0.167Co0.167Mn0.5O2的晶体结构(其中NiO6, CoO6和MnO6八面体分别标识为灰色、蓝色和紫色, 氧原子为红色, 锂离子为绿色); (b) 氧与周围配位原子的4种示意图

    Fig. 1.  (a) Crystal structure of Li1.167Ni0.167Co0.167Mn0.5O2 (NiO6, CoO6 and MnO6 octahedra are marked by gray, blue and purple, respectively; oxygen and lithium ions are denoted by red and green balls, respectively); (b) diagram of the four coordination pattern of oxygen and surrounding atoms.

    图 2  Li1.167Ni0.167Co0.167Mn0.5O2 材料的PDOS图, 虚线表示EF = 0

    Fig. 2.  PDOS for Li1.167Ni0.167Co0.167Mn0.5O2 material. The dotted line represents EF = 0.

    图 3  T = 0—1000 K, 不同带电氧空位的形成能随$ {E}_{\mathrm{F}} $的变化

    Fig. 3.  Formation energies of oxygen vacancies in different charge states as a function of $ {E}_{\mathrm{F}} $at T = 0–1000 K.

    图 4  P = 0.2 bar, 费米能级不同时的氧空位形成能随温度的变化 (a) $ {E}_{\mathrm{F}}=0 $; (b)$ {E}_{\mathrm{F}}={E}_{\mathrm{g}\mathrm{a}\mathrm{p}} $.

    Fig. 4.  Formation energies of an oxygen vacancy with different Fermi level as a function of temperature at P = 0.2 bar: (a)$ {E}_{\mathrm{F}}=0 $; (b) $ {E}_{\mathrm{F}}={E}_{\mathrm{g}\mathrm{a}\mathrm{p}} $

    图 5  ${E}_{\mathrm{F}}={E}_{\mathrm{gap}}=1.10 $ eV, 温度不同时氧空位形成能随氧分压的变化 (a) T = 300 K; (b) T = 1000 K

    Fig. 5.  Formation energies of an oxygen vacancy as a function of oxygen partial pressure at different temperatures with${E}_{\mathrm{F}}={E}_{\mathrm{gap}}=1.10 {\rm{eV}}$: (a) T = 300 K; (b) T = 1000 K.

    图 6  $ {E}_{\mathrm{F}}=0 $, 中性氧空位$ {\mathrm{V}}_{\mathrm{O}}^{0} $的形成能随温度和氧分压的变化

    Fig. 6.  Formation energies of a neutral oxygen vacancy$ {\mathrm{V}}_{\mathrm{O}}^{0} $ as a function of both the temperature and oxygen partial pressure with $ {E}_{\mathrm{F}}=0 $.

    图 7  Li1.167Ni0.167Co0.167Mn0.5O2的二维差分电荷密度 (a) 完整晶体, (b) 有氧空位(红色线表示该区域有电荷聚集, 而蓝色线表示该区域有电荷的移出); Li1.167Ni0.167Co0.167Mn0.5O2的三维差分电荷密度 (c) 完整晶体, (d) 有氧空位

    Fig. 7.  2D charge density plots of Li1.167Ni0.167Co0.167Mn0.5O2: (a) Pristine; (b) with oxygen vacancy (The solid and dashed lines represent the accumulation and depletion of charges relative to the independent atoms, respectively); 3D charge density plots of Li1.167Ni0.167Co0.167Mn0.5O2: (c) pristine; (d) with oxygen vacancy.

    图 8  氧空位附近Mn-A 3d (a)—(c)和Mn-B 3d (d)—(f) 电子在不同电荷态下的PDOS

    Fig. 8.  PDOS of Mn-A 3d (a)–(c) and Mn-B 3d (d)–(f) electrons in different charge states near the oxygen vacancies.

    图 9  氧空位与其邻近点缺陷的相互作用能, 缺陷包括阳离子空位$ {\mathrm{V}}_{\mathrm{M}\mathrm{n}} $以及氧空位邻近的Mn被Fe和Mo替位

    Fig. 9.  Interaction energies of an oxygen vacancy and its neighboring point defects, including vacancies $ {\mathrm{V}}_{\mathrm{M}\mathrm{n}} $ and substitutional FeMn, MoMn point defects, respectively.

    表 1  Li1.167Ni0.167Co0.167Mn0.5O2材料中不同费米能级的3种带电荷态氧空位的形成能

    Table 1.  The calculated formation energies of non-equivalent oxygen vacancies at different charge states in the bulk Li1.167Ni0.167Co0.167Mn0.5O2 at different Fermi level.

    不同配位环境的氧空位形成能/eV
    VO-4Li2MnVO-4LiCoMnVO-3LiNiCoMnVO-3LiNi2Mn
    $ {\mathrm{V}}_{\mathrm{O}}^{0} $2.302.803.123.20
    EF = 0$ {\mathrm{V}}_{\mathrm{O}}^{+1} $–1.30–1.13–0.95–0.66
    $ {\mathrm{V}}_{\mathrm{O}}^{+2} $–5.02–4.90–4.42–4.40
    EF = Egap$ {\mathrm{V}}_{\mathrm{O}}^{0} $2.302.803.123.20
    $ {\mathrm{V}}_{\mathrm{O}}^{+1} $–0.20–0.030.150.44
    $ {\mathrm{V}}_{\mathrm{O}}^{+2} $–2.82–2.70–2.22–2.20
    下载: 导出CSV
  • [1]

    Dunn B, Kamath H, Tarascon J M 2011 Science 334 928Google Scholar

    [2]

    Goodenough J B, Kim Y 2010 Chem. Mater. 22 587Google Scholar

    [3]

    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D 2011 Energy Environ. Sci. 4 3243Google Scholar

    [4]

    Nitta N, Wu F, Lee J T, Yushin G 2015 Mater. Today 18 252Google Scholar

    [5]

    Mizushima K, Jones P, Wiseman P, Goodenough J B 1981 Solid State Ionics 3 171

    [6]

    Wang H, Jang Y I, Huang B Y, Sadoway D R, Chiang Y M 1999 J. Electrochem. Soc. 146 473Google Scholar

    [7]

    Huang H, Yin S C, Nazar L F 2001 Electrochem. Solid. St. 4 A170Google Scholar

    [8]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303Google Scholar

    [9]

    Yuan L X, Wang Z H, Zhang W X, Hu X L, Chen J T, Huang Y H, Goodenough J B 2011 Energy Environ. Sci. 4 269Google Scholar

    [10]

    Liu J L, Hou M Y, Yi J, Guo S S, Wang C X, Xia Y Y 2014 Energy Environ. Sci. 7 705Google Scholar

    [11]

    Zuo W H, Luo M Z, Liu X S, Wu J, Liu H D, Li J, Winter M, Fu R Q, Yang W L, Yang Y 2020 Energy Environ. Sci. 13 4450Google Scholar

    [12]

    Koga H, Croguennec L, Mannessiez P, M Ménétrier, Delmas C 2012 J. Phys. Chem. C. 116 13497Google Scholar

    [13]

    He Z J, Wang Z X, Huang Z M, Chen H, Li X H, Guo H J 2015 J. Mater. Chem. A. 3 16817Google Scholar

    [14]

    Sung Nam Lim, Jung Yoon Seo, Dae Soo Jung 2015 J. Alloy. Compd. 623 55Google Scholar

    [15]

    Lai X W, Hu G R, Peng Z D, Tong H, Lu Y, Wang Y Z, Qi X Y, Xue Z C, Huang Y, Du K 2019 J. Power. Sources. 431 144Google Scholar

    [16]

    Qiu B, Zhang M H, Wu L J, Wang J, Xia Y G, Qian D N 2016 Nat. Commun. 7 1

    [17]

    Zhang B, Wang L, Bai F, Xiao P, Zhang B, Chen X, Sun Jie, Yang W S 2019 Dalton. T. 48 3209Google Scholar

    [18]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [21]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [22]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [23]

    Xiao R J, Li H, Chen L Q 2012 Chem. Mater. 24 4242Google Scholar

    [24]

    Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, Ceder G 2011 Phys. Rev. B 84 045115Google Scholar

    [25]

    Nakamura T, Ohta K, Hou X Y, Kimura Y, Tsuruta K, Tamenori Y, Aso R, Yoshida H, Amezawa K 2021 J. Mater. Chem. A 9 3657Google Scholar

    [26]

    Hu W, Wang H W, Luo W W, Xu B, Ouyang C Y 2020 Solid State Ionics 347 115257Google Scholar

    [27]

    Hashimoto T, Moriwake H 2008 Phys. Rev. B 78 092106Google Scholar

    [28]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406Google Scholar

    [29]

    Wu S Q, Cai N L, Zhu Z Z, Yang Y 2008 Electrochim. Acta 53 7915Google Scholar

    [30]

    Turner D E, Zhu Z Z, Chan C T, Ho K M 1997 Phys. Rev. B 55 13842Google Scholar

    [31]

    Zhang W, Hou Z F 2014 J. Appl. Phys. 115 124104Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [5] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [6] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强. 物理学报, 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [7] 黄文军, 王亚平, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.208Ni0.333Co0.042Mn0.417O2的电子结构和缺陷性质. 物理学报, 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [8] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [9] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [10] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [11] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [12] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [13] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [14] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [15] 袁振坤, 许鹏, 陈时友. 多元半导体光伏材料中晶格缺陷的计算预测. 物理学报, 2015, 64(18): 186102. doi: 10.7498/aps.64.186102
    [16] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [17] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [18] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [19] 张华, 唐元昊, 周薇薇, 李沛娟, 施思齐. LiFePO4中对位缺陷的第一性原理研究. 物理学报, 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
    [20] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
计量
  • 文章访问数:  5300
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-05-01
  • 上网日期:  2022-08-22
  • 刊出日期:  2022-09-05

/

返回文章
返回