搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究

代广珍 代月花 徐太龙 汪家余 赵远洋 陈军宁 刘琦

引用本文:
Citation:

HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究

代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦

First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory

Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi
PDF
导出引用
  • 随着器件尺寸进一步等比例缩小,高k材料HfO2作为俘获层的电荷俘获型存储器展现了较好的耐受性和较强的存储能力,且工艺相对简单,与传统半导体工艺完全兼容,因此得到了广泛的研究. 为研究HfO2中氧空位引入的缺陷能级对电荷俘获型存储器存储特性的影响,运用第一性原理计算分析了HfO2中的氧空位缺陷. 通过改变缺陷超胞中的电子数模拟器件的写入和擦除操作,发现氧空位对电荷的俘获基本上不受氧空位之间距离的影响,而氧空位个数则影响对电子的俘获,氧空位数多,俘获电子的能力就强. 此外,四价配位的氧空位俘获电子的能力比三价配位的氧空位大. 态密度分析发现四价配位的氧空位引入深能级量子态数大,并且受氧空位之间的距离影响小,对电子的俘获概率大. 结果表明,HfO2中四价配位的氧空位缺陷有利于改善电荷俘获型存储器的存储特性.
    With the further scaling down of device dimensions, charge trapping memory with high k materials HfO2 serving as capture layer shows good endurance and high storage capacity. Its relatively simple process and complete compatibility with the conventional semiconductor process furthermore make it widely studied. The oxygen vacancies in HfO2 are studied using the first-principles calculation in order to learn their influence on the storage properties of charge trapping memory. Write and erase operations of memory devices are simulated via changing the number of electrons in the super cell with defects. The results show that basically the distance between oxygen vacancies has no effect on charge trapping, but the number of oxygen vacancies does affect it. The more the number of oxygen vacancies, the stronger the electron capture ability is. Moreover, four-fold coordinated oxygen vacancy (Vo4) has lager capability for trapping charge than three-fold coordinated oxygen vacancy (Vo3). The analysis of density of states shows that Vo4 induces a large number of quantum states with deep energy levels which is little affected by distance and has large possibility of trapping charges. The results show that oxygen vacancy defects in HfO2 tetravalent coordination are conducive to improving the storage characteristics of charge trapping memory.
    • 基金项目: 国家自然科学基金(批准号:61376106)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106).
    [1]

    Kang D, Sze S M 1976 Bell. Syst. Tech. J. 46 1288

    [2]

    Kinam K 2005 IEEE International Electron Devices Meeting Washington DC, American, Dec. 5-5, 2005 p323

    [3]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [4]

    Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interf. 3 3691

    [5]

    Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501

    [6]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888

    [7]

    Molas G, Bocquet M, Vianello E, Perniola L, Grampeix H, Colonna J P, Masarotto L, Martin F, Brianceau P, Gély M, Bongiorno C, Lombardo S, Pananakakis G, Ghibaudo G, Salvo B D 2009 Microelectron. Eng. 86 1796

    [8]

    Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251

    [9]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco CA, American, Dec. 11-13, 2006 p1

    [10]

    Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013

    [11]

    Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C, Liu W M 2008 Phys. Rev. B 78 155413

    [12]

    Zhang X L, Liu L F, Liu W M 2013 Scientific Reports 3 2908

    [13]

    Zhang W, Hou Z F 2013 Phys. Status Solidi 250 352

    [14]

    Zheng J X, Ceder G, Maxisch T 2007 Phys. Rev. B 75 104112

    [15]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego CA, American, Sept. 9-11, 2009 p1

    [16]

    Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [17]

    Cockayne E 2007 Phys. Rev. B 75 094103

    [18]

    You H W, Choa W J 2010 Appl. Phys. Lett. 96 093506

    [19]

    Maikap S, Lee H Y, Wang T Y, Tzeng P J, Wang C C, Lee L S, Liu K C, Yang J R, Tsai M J 2007 Semicond. Sci. Technol. 22 884

    [20]

    Liu X, Zhao G F, Guo L J, Wang X W, Zhang J, Jing Q, Luo Y H 2007 Chin. Phys. B 16 3359

    [21]

    Bai Y L, Chen X R, Cheng X H, Yang X D 2007 Chin. Phys. B 16 700

    [22]

    Yao H Y, Gu X, Ji M, Zhang D E, Gong X G 2006 Acta Phys. Sin. 55 6402 (in Chinese) [姚红英, 顾晓, 季敏, 张笛儿, 龚新高 2006 物理学报 55 6042]

    [23]

    Kresse G, Furthmller J 1996 Canadian Metallurgical Quarterly 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [26]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [27]

    Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678

    [28]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866

    [29]

    Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, Silva da Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30, 2005 p189

    [30]

    Hsu T H, You H C, Ko F H, Lei T F 2006 Electrochem. Soc. 153 G934

    [31]

    Sabina S F D, Alessio Lamperti G C, Salicio O 2012 Appl. Phys. Express 5 21102

  • [1]

    Kang D, Sze S M 1976 Bell. Syst. Tech. J. 46 1288

    [2]

    Kinam K 2005 IEEE International Electron Devices Meeting Washington DC, American, Dec. 5-5, 2005 p323

    [3]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [4]

    Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interf. 3 3691

    [5]

    Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501

    [6]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888

    [7]

    Molas G, Bocquet M, Vianello E, Perniola L, Grampeix H, Colonna J P, Masarotto L, Martin F, Brianceau P, Gély M, Bongiorno C, Lombardo S, Pananakakis G, Ghibaudo G, Salvo B D 2009 Microelectron. Eng. 86 1796

    [8]

    Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251

    [9]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco CA, American, Dec. 11-13, 2006 p1

    [10]

    Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013

    [11]

    Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C, Liu W M 2008 Phys. Rev. B 78 155413

    [12]

    Zhang X L, Liu L F, Liu W M 2013 Scientific Reports 3 2908

    [13]

    Zhang W, Hou Z F 2013 Phys. Status Solidi 250 352

    [14]

    Zheng J X, Ceder G, Maxisch T 2007 Phys. Rev. B 75 104112

    [15]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego CA, American, Sept. 9-11, 2009 p1

    [16]

    Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [17]

    Cockayne E 2007 Phys. Rev. B 75 094103

    [18]

    You H W, Choa W J 2010 Appl. Phys. Lett. 96 093506

    [19]

    Maikap S, Lee H Y, Wang T Y, Tzeng P J, Wang C C, Lee L S, Liu K C, Yang J R, Tsai M J 2007 Semicond. Sci. Technol. 22 884

    [20]

    Liu X, Zhao G F, Guo L J, Wang X W, Zhang J, Jing Q, Luo Y H 2007 Chin. Phys. B 16 3359

    [21]

    Bai Y L, Chen X R, Cheng X H, Yang X D 2007 Chin. Phys. B 16 700

    [22]

    Yao H Y, Gu X, Ji M, Zhang D E, Gong X G 2006 Acta Phys. Sin. 55 6402 (in Chinese) [姚红英, 顾晓, 季敏, 张笛儿, 龚新高 2006 物理学报 55 6042]

    [23]

    Kresse G, Furthmller J 1996 Canadian Metallurgical Quarterly 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [26]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [27]

    Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678

    [28]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866

    [29]

    Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, Silva da Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30, 2005 p189

    [30]

    Hsu T H, You H C, Ko F H, Lei T F 2006 Electrochem. Soc. 153 G934

    [31]

    Sabina S F D, Alessio Lamperti G C, Salicio O 2012 Appl. Phys. Express 5 21102

  • [1] 王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹. 理想拉伸/剪切应变对U3Si2化学键键长及电荷密度分布影响的第一性原理研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20221210
    [2] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成. 物理学报, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [3] 代广珍, 姜永召, 倪天明, 刘鑫, 鲁麟, 刘琦. 变组分Al对HfO2阻变特性影响: 第一性原理研究. 物理学报, 2019, 68(11): 113101. doi: 10.7498/aps.68.20181995
    [4] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [5] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [6] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [7] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [8] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [9] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [10] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [11] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [12] 汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金. 电荷俘获存储器的过擦现象. 物理学报, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [13] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性. 物理学报, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [14] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [15] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [16] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [17] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响. 物理学报, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [18] 侯清玉, 张 跃, 张 涛. 高氧空位浓度对锐钛矿TiO2莫特相变和光谱红移及电子寿命影响的第一性原理研究. 物理学报, 2008, 57(3): 1862-1866. doi: 10.7498/aps.57.1862
    [19] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究. 物理学报, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [20] 阎志军, 王印月, 徐 闰, 蒋最敏. 电子束蒸发制备HfO2高k薄膜的结构特性. 物理学报, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
计量
  • 文章访问数:  3505
  • PDF下载量:  644
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-21
  • 修回日期:  2014-03-07
  • 刊出日期:  2014-06-05

HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究

  • 1. 安徽工程大学电气工程学院, 安徽省检测及自动化重点实验室, 芜湖 241000;
  • 2. 安徽大学电子信息工程学院, 安徽省集成电路设计重点实验室, 合肥 230601;
  • 3. 中国科学院微电子研究所, 北京 100029
    基金项目: 国家自然科学基金(批准号:61376106)资助的课题.

摘要: 随着器件尺寸进一步等比例缩小,高k材料HfO2作为俘获层的电荷俘获型存储器展现了较好的耐受性和较强的存储能力,且工艺相对简单,与传统半导体工艺完全兼容,因此得到了广泛的研究. 为研究HfO2中氧空位引入的缺陷能级对电荷俘获型存储器存储特性的影响,运用第一性原理计算分析了HfO2中的氧空位缺陷. 通过改变缺陷超胞中的电子数模拟器件的写入和擦除操作,发现氧空位对电荷的俘获基本上不受氧空位之间距离的影响,而氧空位个数则影响对电子的俘获,氧空位数多,俘获电子的能力就强. 此外,四价配位的氧空位俘获电子的能力比三价配位的氧空位大. 态密度分析发现四价配位的氧空位引入深能级量子态数大,并且受氧空位之间的距离影响小,对电子的俘获概率大. 结果表明,HfO2中四价配位的氧空位缺陷有利于改善电荷俘获型存储器的存储特性.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回