搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响

代广珍 蒋先伟 徐太龙 刘琦 陈军宁 代月花

引用本文:
Citation:

密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响

代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花

Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study

Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua
PDF
导出引用
  • HfO2因高k值、热稳定性良好和相对Si导带偏移良好等特点, 作为电荷俘获型存储器栅介质材料得到了广泛研究. 为了明确高k俘获层提高CTM电荷俘获效率的原因, 运用基于密度泛函理论的第一性原理计算, 研究了氧空位引起HfO2的晶格变化及其影响计算结果显示优化后氧空位最近邻氧原子间距明显减小, 次近邻O与Hf间距变化稍小. 优化后氧空位明显改变局部晶格, 而对较远晶格影响逐渐减弱, 即引起了局部晶格变化深能级和导带电子态密度主要是Hf原子贡献, 而价带则是O原子贡献. 优化后各元素局部电子态密度和总电子态密度都明显大于未优化体系, 局部电子态密度之和比总电子态密度小. 优化后俘获电荷主要在氧空位周围和相邻氧原子上, 而未优化时电荷遍布整个体系. 优化后缺陷体系电荷局域能增大, 电荷量增加时未优化体系电荷局域能明显减小, 即晶格变化无饱和特性对电荷局域影响大.说明晶格变化对电荷的俘获能力较强, 有利于改善存储器特性.
    HfO2, as a gate dielectric material for the charge trapping memory, has been studied extensively due to its merits such as high k value, good thermal stability, and conduction band offset relative to Si, etc.. In order to understand the reason why the charge trapping efficiency is improved by high k capture layer with respect to charge trapping type memory, the variation of HfO2 crystal texture induced by oxygen vacancy and the influences of it are investigated using the first principle calculation based on density functional theory. Results show that the distance of the nearest neighbor oxygen atom from oxygen vacancy is markedly reduced after optimization, whereas the decrease of distances between the next nearest neighbor oxygen atom from oxygen vacancy and hafnium is less. The change of local crystal lattice is caused by optimized oxygen vacancy for it significantly changes the local lattice, but rarely influences the far lattice. Deep energy level and density of electron states in conduction band are contributed by Hf atoms, while the density of electron states in valence band is contributed by O atoms. The local density of electron states in each element and the total density of electron states in the optimization system are all larger than those in the system without optimization, and the sum of the local densities of electron states is less than the total density of electron states. The trapped charges are moving mainly around the oxygen vacancy and the adjacent atoms of oxygen in the optimization system, but the charges are without optimization throughout the system. The local energy of charge is increased in optimized defect system, while the local energy of charge is conspicuously reduced in the system without optimization, i.e. lattice variation without saturation characteristic has a large effect on the local energy of charge. Results further prove that the change of crystal lattice induced by oxygen vacancy has strong ability to capture charge, which helps improve the features of memory.
    • 基金项目: 国家自然科学基金面上项目(批准号: 61376106)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106).
    [1]

    Kim, Kinam 2005 IEEE International Electron Devices Meeting Washington, DC, American, Dec 5-5 2005 p323

    [2]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [3]

    Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501

    [4]

    Chen X, Zhu Z L, Liu M 2010 Appl. Phys. Lett. 97 225513

    [5]

    Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interfaces 3 3691

    [6]

    Liu J, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888

    [7]

    Molas G, Bocquet M, Vianello E, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2009 Microelectron. Eng. 86 1796

    [8]

    Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251

    [9]

    Lai C H, Chin A, Kao H L, Chen K M, Hong M, Kwo J, Chi C C 2006 Symposium on VLSI Technology Hawaii, American, June 13-15 2006 p54

    [10]

    Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013

    [11]

    You H C, Hsu T H, Ko F H, Huang J W, Lei T F 2006 IEEE Electron device letters 27 653

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin K J, Lai Y L, Lai H L 2007 Electron Device and Solid-State Circuits (EDSSC 2007), Taian, Tainan, China, Dec 20-22 2007 p629

    [13]

    Joo M S, Cho B J, Yeo C C, Chan D S H, Whoang S J, Mathew S 2003 IEEE Trans. Electron Devices 50 2088

    [14]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco, CA, American Dec 11-13 2006 p1

    [15]

    Tan Y N, Chim W J, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electron Devices 53 654

    [16]

    Robertson J, Xiong K, Clark S J 2006 Thin Solid Films 496 1

    [17]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [18]

    Umezawa N, Sato M, Shiraishi K 2008 Appl. Phys. Lett. 93 223104

    [19]

    Ramo D M, Shluger A L, Gabartin J L and Bersuker G 2007 Phys. Rev. Lett. 99 155504

    [20]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego, CA, American Sept 9-11 2009 p155

    [21]

    Zhang W, Hou Z F 2013 Phys. Status Solidi B 250 352

    [22]

    Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [23]

    Garcia J C, Scolfaro L M R, Leite J R, Lino A T, Freire V N, Farias G A, Da Silva Jr E F 2004 Appl. Phys. Lett. 85 5022

    [24]

    Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, da Silva Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30 2005 p189

    [25]

    Cockayne E 2007 Phys. Rev. B 75 094103

    [26]

    Dai G Z, Dai Y H, Xu T L, Wang J Y, Zhao Y Y, Chen J N, Liu Q 2014 Acta Phys. Sin. 63 123101 (in Chinese) [代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦 2014 物理学报 63 123101]

    [27]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [31]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866

    [32]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S W 2008 Phys. Rev. B 78 012102

    [33]

    Balog M, Schieber M, Michiman M, Patai S 1977 Thin Solid Films 41 247

    [34]

    Chen G H, Hou Z F, Gong X G 2008 Comp. Mater. Sci. 44 46

  • [1]

    Kim, Kinam 2005 IEEE International Electron Devices Meeting Washington, DC, American, Dec 5-5 2005 p323

    [2]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [3]

    Liu Q, Dou C M, Wang Y, Long S B, Wang W, Liu M, Zhang M H, Chen J N 2009 Appl. Phys. Lett. 95 023501

    [4]

    Chen X, Zhu Z L, Liu M 2010 Appl. Phys. Lett. 97 225513

    [5]

    Songpon P, Sirilux P, Supason P W 2011 ACS Appl. Mater. Interfaces 3 3691

    [6]

    Liu J, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 China Tech. Sci. 55 888

    [7]

    Molas G, Bocquet M, Vianello E, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2009 Microelectron. Eng. 86 1796

    [8]

    Larcher L, Padovani A 2010 Microelectron. Reliab. 50 1251

    [9]

    Lai C H, Chin A, Kao H L, Chen K M, Hong M, Kwo J, Chi C C 2006 Symposium on VLSI Technology Hawaii, American, June 13-15 2006 p54

    [10]

    Liu J, Wang Q, Long S B, Zhang M H, Liu M 2010 Semicond. Sci. Technol. 25 055013

    [11]

    You H C, Hsu T H, Ko F H, Huang J W, Lei T F 2006 IEEE Electron device letters 27 653

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin K J, Lai Y L, Lai H L 2007 Electron Device and Solid-State Circuits (EDSSC 2007), Taian, Tainan, China, Dec 20-22 2007 p629

    [13]

    Joo M S, Cho B J, Yeo C C, Chan D S H, Whoang S J, Mathew S 2003 IEEE Trans. Electron Devices 50 2088

    [14]

    Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Yeo Y C, Yoo W J 2006 IEEE International Electron Devices Meeting San Francisco, CA, American Dec 11-13 2006 p1

    [15]

    Tan Y N, Chim W J, Choi W K, Joo M S, Cho B J 2006 IEEE Trans. Electron Devices 53 654

    [16]

    Robertson J, Xiong K, Clark S J 2006 Thin Solid Films 496 1

    [17]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [18]

    Umezawa N, Sato M, Shiraishi K 2008 Appl. Phys. Lett. 93 223104

    [19]

    Ramo D M, Shluger A L, Gabartin J L and Bersuker G 2007 Phys. Rev. Lett. 99 155504

    [20]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes and Devices San Diego, CA, American Sept 9-11 2009 p155

    [21]

    Zhang W, Hou Z F 2013 Phys. Status Solidi B 250 352

    [22]

    Foster A S, Lopez G F, Shluger A L, Nieminen R M 2002 Phys. Rev. B 65 174117

    [23]

    Garcia J C, Scolfaro L M R, Leite J R, Lino A T, Freire V N, Farias G A, Da Silva Jr E F 2004 Appl. Phys. Lett. 85 5022

    [24]

    Garcia J C, Lino A T, Scolfaro L M R, Leite J R, Freire V N, Farias G A, da Silva Jr E F 2005 27th International Conference on the Physics of Semiconductors Arizona, American, July 26-30 2005 p189

    [25]

    Cockayne E 2007 Phys. Rev. B 75 094103

    [26]

    Dai G Z, Dai Y H, Xu T L, Wang J Y, Zhao Y Y, Chen J N, Liu Q 2014 Acta Phys. Sin. 63 123101 (in Chinese) [代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦 2014 物理学报 63 123101]

    [27]

    Whittle K R, Lumpkin G R, Ashbrook S E 2006 J. Solid State Chem. 179 512

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [31]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectron. Eng. 86 1866

    [32]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S W 2008 Phys. Rev. B 78 012102

    [33]

    Balog M, Schieber M, Michiman M, Patai S 1977 Thin Solid Films 41 247

    [34]

    Chen G H, Hou Z F, Gong X G 2008 Comp. Mater. Sci. 44 46

  • [1] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [2] 王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹. 理想拉伸/剪切应变对U3Si2化学键键长及电荷密度分布影响的第一性原理研究. 物理学报, 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [3] 梁飞, 林哲帅, 吴以成. 基于第一性原理的新型非线性光学晶体探索. 物理学报, 2018, 67(11): 114203. doi: 10.7498/aps.67.20180189
    [4] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [5] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, 2018, 67(6): 066801. doi: 10.7498/aps.67.20172287
    [6] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [7] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [8] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [9] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [10] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [11] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [12] 胡小颖, 田宏伟, 宋立军, 朱品文, 乔靓. Li-N, Li-2N共掺p型ZnO的第一性原理研究. 物理学报, 2012, 61(4): 047102. doi: 10.7498/aps.61.047102
    [13] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [14] 高巍, 巩水利, 朱嘉琦, 马国佳. 掺氮四面体非晶碳的第一性原理研究. 物理学报, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [15] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [16] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [17] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计. 物理学报, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [18] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [19] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [20] 党宏丽, 王崇愚, 于 涛. γ-TiAl中Nb和Mo合金化效应的第一性原理研究. 物理学报, 2007, 56(5): 2838-2844. doi: 10.7498/aps.56.2838
计量
  • 文章访问数:  6154
  • PDF下载量:  991
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-05
  • 修回日期:  2014-09-19
  • 刊出日期:  2015-02-05

/

返回文章
返回