搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理的新型非线性光学晶体探索

梁飞 林哲帅 吴以成

引用本文:
Citation:

基于第一性原理的新型非线性光学晶体探索

梁飞, 林哲帅, 吴以成

First principle study of nonlinear optical crystals

Liang Fei, Lin Zhe-Shuai, Wu Yi-Cheng
PDF
导出引用
  • 非线性光学晶体能对常见波段的激光进行频率转换,从而获得宽波段、可调谐的激光光源.此类光电功能材料在军事和民用领域具有重要的战略价值和应用价值.经过30多年的发展,应用于可见光及邻近波段的非线性光学晶体技术已经基本成熟,但深紫外和中远红外波段的非线性光学晶体技术的发展仍存在诸多不足,还需要在这些波段进行新型优质的非线性光学晶体探索.近年来,为了改变传统低效的炒菜式实验探索,加快新材料研发速度,基于密度泛函理论的第一性原理计算方法在新型非线性光学晶体探索中得到了广泛的应用.本文总结了近几年深紫外和中红外波段非线性光学晶体的新进展,通过介绍几种新型非线性光学晶体材料的研发过程,突出了第一性原理计算在新材料探索过程中起到的关键作用;探讨了非线性光学晶体研发的研究难点与趋势,以及第一性原理方法在未来新材料探索中的重点攻关方向.
    Nonlinear optical (NLO) crystal is one of the important opt-electrical functional materials that can convert laser frequency and obtain wide band tunable coherent sources, thus it possesses crucial strategic and application value in military and civil fields. On the basis of more than 30 years' efforts, the NLO crystals in visible and near infrared region, including -BaB2O4 LiB3O5 and KTiOPO4, have been basically mature. However, there are still many shortcomings for those NLO crystals used in deep ultraviolet (DUV) and mid/far-infrared (IR) regions, thus putting forward more requirements for high performance crystals. For DUV KBe2BO3F2 (KBBF) crystals, the main shortcomings are the use of toxic BeO raw materials and strong layer growth tendency. Wide transparent region and high second harmonic generation (SHG) effect are also expected in new developed DUV NLO crystals. More importantly, a large enough birefringence is highlighted to satisfy the phase-matchable condition and DUV harmonic generation capacity below 200 nm. On the other hand, the main requirement for mid/far-infrared NLO crystals is to maintain the balance between high laser damage threshold and strong SHG response. Indeed, it is a very difficult task to search for good NLO crystals through the traditional trial and error experimental methods. Theoretical studies, especially first principles calculations, can provide an efficient way to investigate and design new NLO materials with superior properties. In this paper, the recent progress of deep-UV and mid-IR NLO crystals is summarized. In addition, the crucial role of first principles calculations in new material exploration and design is highlighted by introducing several typical new NLO crystals, including defect diamond-like compound AgZnPS4, trigonal alkaline metal fluorooxoborate KB4O6F and alkaline earth fluorooxoborate SrB5O7F3. Moreover, some advanced analysis tools are introduced, such as real space atomic cutting method, SHG-weighted mapping, flexible dipole moment model, and non-bonding atomic orbitals analysis, and used to investigate the structure-property relationship in langasite La3SnGa5O14, metal cyanurate Ca3(C3N3O3)2, vanadium-carbonate K3[V(O2)2O]CO3, etc. Further, the flow chart of high-throughput first principles calculations of NLO crystal is proposed. According to the known or predicted crystal structure, we can obtain the chemical stability, band gap, NLO coefficient, birefringence and phase-matchable capacity quickly, thus easily judging the research potential of a new NLO material. On the basis of these ideas, a great blueprint for NLO crystal material genome engineering is highly put forward. Finally, the difficulties in research and challenges in NLO material investigations are discussed, and the direction of future research priorities based on first principles calculations are pointed out.
      通信作者: 林哲帅, zslin@mail.ipc.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2015AA034203)、国家自然科学基金(批准号:91622118,91622124,11174297,51602318)和中国科学院青年创新促进会优秀会员基金资助的课题.
      Corresponding author: Lin Zhe-Shuai, zslin@mail.ipc.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 20115AA034203), the National Natural Science Foundation of China (Grant Nos. 91622118, 91622124, 11174297, 51602318), and the Fund for Excellent Member of Youth Innovation Promotion Association, China.
    [1]

    Savage N 2007 Nat. Photonics 1 83

    [2]

    Garmire E 2013 Opt. Express 21 30532

    [3]

    Chen C T, Wu B C, Jiang A D, You G M 1985 Sci. China B 28 235

    [4]

    Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K, Lin S J 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 616

    [5]

    Xu B, Liu L, Wang X, Chen C, Zhang X, Lin S 2015 Appl. Phys. B 121 489

    [6]

    Bierlein J D, Vanherzeele H 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 622

    [7]

    Zhu S, Zhu Y Y, Ming N B 1997 Science 278 843

    [8]

    Lu Y L, Wei T, Duewer F, Lu Y, Ming N B, Schultz P G, Xiang X D 1997 Science 276 2004

    [9]

    Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N, Ming N B, Feng Y J 1999 Science 284 1822

    [10]

    Wang L, Xing T, Hu S, Wu X, Wu H, Wang J, Jiang H 2017 Opt. Express 25 3373

    [11]

    Wang S, Zhang X, Zhang X, Li C, Gao Z, Lu Q, Tao X 2014 J. Cryst. Growth 401 150

    [12]

    Lin X, Zhang G, Ye N 2009 Cryst. Growth Des. 9 1186

    [13]

    Yao J Y, Mei D J, Bai L, Lin Z S, Yin W L, Fu P Z, Wu Y C 2010 Inorg. Chem. 49 9212

    [14]

    Wang S, Dai S, Jia N, Zong N, Li C, Shen Y, Yu T, Qiao J, Gao Z, Peng Q, Xu Z, Tao X 2017 Opt. Lett. 42 2098

    [15]

    Yang F, Yao J Y, Xu H Y, Zhang F F, Zhai N X, Lin Z H, Zong N, Peng Q J, Zhang J Y, Cui D F, Wu Y C, Chen C T, Xu Z Y 2015 IEEE Photonics Technol. Lett. 27 1100

    [16]

    Li Y, Wu Z, Zhang X, Wang L, Zhang J, Wu Y 2014 J. Cryst. Growth 402 53

    [17]

    Liu P, Zhang X, Yan C, Xu D, Li Y, Shi W, Zhang G, Zhang X, Yao J, Wu Y 2016 Appl. Phys. Lett. 108 011104

    [18]

    Liu P, Xu D, Li Y, Zhang X, Wang Y, Yao J, Wu Y 2014 EPL 106 60001

    [19]

    Halasyamani P S, Zhang W 2017 Inorg. Chem. 56 12077

    [20]

    Zhou M, Kang L, Yao J, Lin Z, Wu Y, Chen C 2016 Inorg. Chem. 55 3724

    [21]

    Kong F J, Jiang G 2009 Physica B: Conden. Matter. 404 2340

    [22]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [23]

    Rashkeev S N, Lambrecht W R L, Segall B 1998 Phys. Rev. B 57 3905

    [24]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [25]

    Marques M A L, Gross E K U 2004 Annu. Rev. Phys. Chem. 55 427

    [26]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [27]

    Lin J, Lee M H, Liu Z P, Chen C T, Pickard C J 1999 Phys. Rev. B 60 13380

    [28]

    Kang L, Ramo D M, Lin Z, Bristowe P D, Qin J, Chen C 2013 J. Mater. Chem. C 1 7363

    [29]

    Lin Z S, Kang L, Zheng T, He R, Huang H, Chen C T 2012 Comput. Mater. Sci. 60 99

    [30]

    He R, Lin Z S, Zheng T, Huang H, Chen C T 2012 J. Phys. Condens. Matter 24 145503

    [31]

    He R, Huang H, Kang L, Yao W, Jiang X, Lin Z, Qin J, Chen C 2013 Appl. Phys. Lett. 102 231904

    [32]

    Lin Z S, Jiang X X, Kang L, Gong P F, Luo S Y, Lee M H 2014 J. Phys. D: Appl. Phys. 47 253001

    [33]

    Kang L, Zhou M, Yao J, Lin Z, Wu Y, Chen C 2015 J. Am. Chem. Soc. 137 13049

    [34]

    Lin Z S, Lin J, Wang Z Z, Chen C T, Lee M H 2000 Phys. Rev. B 62 1757

    [35]

    Chen C T, Wu Y C, Li R K 1989 Int. Rev. Phys. Chem. 8 65

    [36]

    Zhang J, Kang L, Lin T H, Jiang X, Gong P, Lee M H, Lin Z 2015 J. Phys. Condens. Matter 27 85501

    [37]

    Lee M H, Yang C H, Jan J H 2004 Phys. Rev. B 70 235110

    [38]

    Liang F, Kang L, Zhang X, Lee M H, Lin Z, Wu Y 2017 Cryst. Growth Des. 17 4015

    [39]

    Jiang X, Zhao S, Lin Z, Luo J, Bristowe P D, Guan X, Chen C 2014 J. Mater. Chem. C 2 530

    [40]

    Lan H, Liang F, Lin Z, Yu H, Zhang H, Wang J 2017 Int. J. Opt. 207 1

    [41]

    Lan H, Liang F, Jiang X, Zhang C, Yu H, Lin Z, Zhang H, Wang J, Wu Y 2018 J. Am. Chem. Soc. 140 4684

    [42]

    Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z, Zhou X J 2008 Rev. Sci. Instrum. 79 023105

    [43]

    Cyranoski D 2009 Nature 457 953

    [44]

    Pan F, Shen G Q, Wang R J, Wang X Q, Shen D Z 2002 J. Cryst. Growth 241 108

    [45]

    Zhang X, Wang L, Zhang S, Wang G, Zhao S, Zhu Y, Wu Y, Chen C 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 2236

    [46]

    Yu P, Wu L M, Zhou L J, Chen L 2014 J. Am. Chem. Soc. 136 480

    [47]

    Zhao S, Gong P, Luo S, Bai L, Lin Z, Tang Y, Zhou Y, Hong M, Luo J 2015 Angew. Chem. Int. Ed. 54 4217

    [48]

    Jiang X, Luo S, Kang L, Gong P, Huang H, Wang S, Lin Z, Chen C 2015 ACS Photonics 2 1183

    [49]

    Chen C T, Liu L J, Wang X Y 2014 Physics 43 520(in Chinese) [陈创天, 刘丽娟, 王晓洋 2014 物理 43 520]

    [50]

    Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S 2017 Angew. Chem. Int. Ed. 56 14119

    [51]

    Zou G, Ye N, Huang L, Lin X 2011 J. Am. Chem. Soc. 133 20001

    [52]

    Kang L, Lin Z, Qin J, Chen C 2013 Sci. Rep. 3 1366

    [53]

    Kang L, Luo S, Peng G, Ye N, Wu Y, Chen C, Lin Z 2015 Inorg. Chem. 54 10533

    [54]

    Wu H, Pan S, Poeppelmeier K R, Li H, Jia D, Chen Z, Fan X, Yang Y, Rondinelli J M, Luo H 2011 J. Am. Chem. Soc. 133 7786

    [55]

    Yu H, Wu H, Pan S, Yang Z, Su X, Zhang F 2012 J. Mater. Chem. 22 9665

    [56]

    Zhao S, Gong P, Bai L, Xu X, Zhang S, Sun Z, Lin Z, Hong M, Chen C, Luo J 2014 Nat. Commun. 5 4019

    [57]

    Zhao S, Gong P, Luo S, Bai L, Lin Z, Ji C, Chen T, Hong M, Luo J 2014 J. Am. Chem. Soc. 136 8560

    [58]

    Zhao S, Kang L, Shen Y, Wang X, Asghar M A, Lin Z, Xu Y, Zeng S, Hong M, Luo J 2016 J. Am. Chem. Soc. 138 2961

    [59]

    Cong R, Wang Y, Kang L, Zhou Z, Lin Z, Yang T 2015 Inorg. Chem. Front. 2 170

    [60]

    Zhang B, Shi G, Yang Z, Zhang F, Pan S 2017 Angew. Chem. Int. Ed. 56 3916

    [61]

    Belokoneva E L, Stefanovich S Y, Dimitrova O V, Ivanova A G 2002 Zh. Neorg. Khim. 47 370

    [62]

    Liang F, Kang L, Gong P, Lin Z, Wu Y 2017 Chem. Mater. 29 7098

    [63]

    Shi G, Wang Y, Zhang F, Zhang B, Yang Z, Hou X, Pan S, Poeppelmeier K R 2017 J. Am. Chem. Soc. 139 10645

    [64]

    Wang Y, Zhang B, Yang Z, Pan S 2018 Angew. Chem. Int. Ed. 57 2150

    [65]

    Luo M, Liang F, Song Y, Zhao D, Xu F, Ye N, Lin Z 2018 J. Am. Chem. Soc. 140 3884

    [66]

    Petrov V 2015 Prog. Quantum Electron. 42 1

    [67]

    Wu K, Yang Z, Pan S 2016 Angew. Chem. Int. Ed. 55 6712

    [68]

    Wu K, Zhang B, Yang Z, Pan S 2017 J. Am. Chem. Soc. 139 14885

    [69]

    Liang F, Kang L, Lin Z, Wu Y 2017 Cryst. Growth Des. 17 2254

    [70]

    Li C, Yin W L, Gong P F, Li X S, Zhou M L, Mar A, Lin Z S, Yao J Y, Wu Y C, Chen C T 2016 J. Am. Chem. Soc. 138 6135

    [71]

    Halasyamani P S, Poeppelmeier K R 1998 Chem. Mater. 10 2753

    [72]

    Banerjee S, Malliakas C D, Jang J I, Ketterson J B, Kanatzidis M G 2008 J. Am. Chem. Soc. 130 12270

    [73]

    Bera T K, Song J H, Freeman A J, Jang J I, Ketterson J B, Kanatzidis M G 2008 Angew. Chem. Int. Ed. 47 7828

    [74]

    Bera T K, Jang J I, Song J H, Malliakas C D, Freeman A J, Ketterson J B, Kanatzidis M G 2010 J. Am. Chem. Soc. 132 3484

    [75]

    Hanna D C, Rutt H N, Stanley C R, Smith R C, Lutherda B 1972 IEEE J. Quantum Electron. 8 317

    [76]

    Li G, Wu K, Liu Q, Yang Z, Pan S 2016 J. Am. Chem. Soc. 138 7422

    [77]

    Liu B W, Zeng H Y, Jiang X M, Wang G E, Li S F, Xu L, Guo G C 2016 Chem. Sci. 7 6273

    [78]

    Lekse J W, Moreau M A, McNerny K L, Yeon J, Halasyamani P S, Aitken J A 2009 Inorg. Chem. 48 7516

    [79]

    Liang F, Kang L, Lin Z, Wu Y, Chen C 2017 Coord. Chem. Rev. 333 57

    [80]

    Parth E 1964 Crystal Chemistry of Tetrahedral Structures (1st Ed.) (New York: Gordon and Breach Science Publishers Inc) pp1--25

    [81]

    Wu K, Yang Z, Pan S 2017 Chem. Commun. 53 3010

    [82]

    Wu K, Pan S 2017 Crystals 7 107

    [83]

    Li G, Chu Y, Zhou Z 2018 Chem. Mater. 30 602

    [84]

    Jantz W, Koidl P, Wettling W 1983 Appl. Phys. A-Mater. Sci. Pro. 30 109

    [85]

    Zhang M J, Jiang X M, Zhou L J, Guo G C 2013 J. Mater. Chem. C 1 4754

    [86]

    Zhang G, Li Y, Jiang K, Zeng H, Liu T, Chen X, Qin J, Lin Z, Fu P, Wu Y, Chen C 2012 J. Am. Chem. Soc. 134 14818

    [87]

    Wu Q, Meng X, Zhong C, Chen X, Qin J 2014 J. Am. Chem. Soc. 136 5683

    [88]

    Zhang X, Jiang X, Li Y, Lin Z, Zhang G, Wu Y 2015 CrystEngComm 17 1050

    [89]

    Kwon O P, Kwon S J, Jazbinsek M, Brunner F D J, Seo J I, Hunziker C, Schneider A, Yun H, Lee Y S, Guenter P 2008 Adv. Funct. Mater. 18 3242

    [90]

    Kalmutzki M, Strobele M, Wackenhut F, Meixner A J, Meyer H J 2014 Inorg. Chem. 53 12540

    [91]

    Divya R, Nair L P, Bijini B R, Nair C M K, Gopakumar N, Babu K R 2017 Physica B 526 37

    [92]

    Xia M, Zhou M, Liang F, Meng X, Yao J, Lin Z, Li R 2018 Inorg. Chem. 57 32

    [93]

    Song Y, Luo M, Liang F, Ye N, Lin Z 2018 Chem. Commun. 54 1445

    [94]

    Liu J W, Wang P, Chen L 2011 Inorg. Chem. 50 5706

    [95]

    Xia M, Jiang X, Lin Z, Li R 2016 J. Am. Chem. Soc. 138 14190

    [96]

    Majchrowski A, Chrunik M, Rudysh M, Piasecki M, Ozga K, Lakshminarayana G, Kityk I V 2017 J. Mater. Sci. 53 1217

    [97]

    Daub M, Krummer M, Hoffmann A, Bayarjargal L, Hillebrecht H 2017 Chem. Eur. J. 23 1331

    [98]

    Zhao S, Yang Y, Shen Y, Zhao B, Li L, Ji C, Wu Z, Yuan D, Lin Z, Hong M, Luo J 2017 Angew. Chem. Int. Ed. 56 540

    [99]

    Peng G, Yang Y, Tang Y H, Luo M, Yan T, Zhou Y, Lin C, Lin Z, Ye N 2017 Chem. Commun. 53 9398

    [100]

    Song Y, Luo M, Liang F, Lin C, Ye N, Yan G, Lin Z 2017 Dalton Trans. 46 15228

    [101]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002

    [102]

    Kumar N, Najmaei S, Cui Q N, Ceballos F, Ajayan P M, Lou J, Zhao H 2013 Phys. Rev. B 87 161403

    [103]

    Li Y, Rao Y, Mak K F, You Y, Wang S, Dean C R, Heinz T F 2013 Nano Lett. 13 3329

    [104]

    Zhou X, Cheng J X, Zhou Y B, Cao T, Hong H, Liao Z M, Wu S W, Peng H L, Liu K H, Yu D P 2015 J. Am. Chem. Soc. 137 7994

    [105]

    Wu L, Patankar S, Morimoto T, Nair N L, Thewalt E, Little A, Analytis J G, Moore J E, Orenstein J 2016 Nat. Phys. 13 350

    [106]

    Mikhailov S A 2011 Phys. Rev. B 84 045432

  • [1]

    Savage N 2007 Nat. Photonics 1 83

    [2]

    Garmire E 2013 Opt. Express 21 30532

    [3]

    Chen C T, Wu B C, Jiang A D, You G M 1985 Sci. China B 28 235

    [4]

    Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K, Lin S J 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 616

    [5]

    Xu B, Liu L, Wang X, Chen C, Zhang X, Lin S 2015 Appl. Phys. B 121 489

    [6]

    Bierlein J D, Vanherzeele H 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 622

    [7]

    Zhu S, Zhu Y Y, Ming N B 1997 Science 278 843

    [8]

    Lu Y L, Wei T, Duewer F, Lu Y, Ming N B, Schultz P G, Xiang X D 1997 Science 276 2004

    [9]

    Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N, Ming N B, Feng Y J 1999 Science 284 1822

    [10]

    Wang L, Xing T, Hu S, Wu X, Wu H, Wang J, Jiang H 2017 Opt. Express 25 3373

    [11]

    Wang S, Zhang X, Zhang X, Li C, Gao Z, Lu Q, Tao X 2014 J. Cryst. Growth 401 150

    [12]

    Lin X, Zhang G, Ye N 2009 Cryst. Growth Des. 9 1186

    [13]

    Yao J Y, Mei D J, Bai L, Lin Z S, Yin W L, Fu P Z, Wu Y C 2010 Inorg. Chem. 49 9212

    [14]

    Wang S, Dai S, Jia N, Zong N, Li C, Shen Y, Yu T, Qiao J, Gao Z, Peng Q, Xu Z, Tao X 2017 Opt. Lett. 42 2098

    [15]

    Yang F, Yao J Y, Xu H Y, Zhang F F, Zhai N X, Lin Z H, Zong N, Peng Q J, Zhang J Y, Cui D F, Wu Y C, Chen C T, Xu Z Y 2015 IEEE Photonics Technol. Lett. 27 1100

    [16]

    Li Y, Wu Z, Zhang X, Wang L, Zhang J, Wu Y 2014 J. Cryst. Growth 402 53

    [17]

    Liu P, Zhang X, Yan C, Xu D, Li Y, Shi W, Zhang G, Zhang X, Yao J, Wu Y 2016 Appl. Phys. Lett. 108 011104

    [18]

    Liu P, Xu D, Li Y, Zhang X, Wang Y, Yao J, Wu Y 2014 EPL 106 60001

    [19]

    Halasyamani P S, Zhang W 2017 Inorg. Chem. 56 12077

    [20]

    Zhou M, Kang L, Yao J, Lin Z, Wu Y, Chen C 2016 Inorg. Chem. 55 3724

    [21]

    Kong F J, Jiang G 2009 Physica B: Conden. Matter. 404 2340

    [22]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [23]

    Rashkeev S N, Lambrecht W R L, Segall B 1998 Phys. Rev. B 57 3905

    [24]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [25]

    Marques M A L, Gross E K U 2004 Annu. Rev. Phys. Chem. 55 427

    [26]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [27]

    Lin J, Lee M H, Liu Z P, Chen C T, Pickard C J 1999 Phys. Rev. B 60 13380

    [28]

    Kang L, Ramo D M, Lin Z, Bristowe P D, Qin J, Chen C 2013 J. Mater. Chem. C 1 7363

    [29]

    Lin Z S, Kang L, Zheng T, He R, Huang H, Chen C T 2012 Comput. Mater. Sci. 60 99

    [30]

    He R, Lin Z S, Zheng T, Huang H, Chen C T 2012 J. Phys. Condens. Matter 24 145503

    [31]

    He R, Huang H, Kang L, Yao W, Jiang X, Lin Z, Qin J, Chen C 2013 Appl. Phys. Lett. 102 231904

    [32]

    Lin Z S, Jiang X X, Kang L, Gong P F, Luo S Y, Lee M H 2014 J. Phys. D: Appl. Phys. 47 253001

    [33]

    Kang L, Zhou M, Yao J, Lin Z, Wu Y, Chen C 2015 J. Am. Chem. Soc. 137 13049

    [34]

    Lin Z S, Lin J, Wang Z Z, Chen C T, Lee M H 2000 Phys. Rev. B 62 1757

    [35]

    Chen C T, Wu Y C, Li R K 1989 Int. Rev. Phys. Chem. 8 65

    [36]

    Zhang J, Kang L, Lin T H, Jiang X, Gong P, Lee M H, Lin Z 2015 J. Phys. Condens. Matter 27 85501

    [37]

    Lee M H, Yang C H, Jan J H 2004 Phys. Rev. B 70 235110

    [38]

    Liang F, Kang L, Zhang X, Lee M H, Lin Z, Wu Y 2017 Cryst. Growth Des. 17 4015

    [39]

    Jiang X, Zhao S, Lin Z, Luo J, Bristowe P D, Guan X, Chen C 2014 J. Mater. Chem. C 2 530

    [40]

    Lan H, Liang F, Lin Z, Yu H, Zhang H, Wang J 2017 Int. J. Opt. 207 1

    [41]

    Lan H, Liang F, Jiang X, Zhang C, Yu H, Lin Z, Zhang H, Wang J, Wu Y 2018 J. Am. Chem. Soc. 140 4684

    [42]

    Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z, Zhou X J 2008 Rev. Sci. Instrum. 79 023105

    [43]

    Cyranoski D 2009 Nature 457 953

    [44]

    Pan F, Shen G Q, Wang R J, Wang X Q, Shen D Z 2002 J. Cryst. Growth 241 108

    [45]

    Zhang X, Wang L, Zhang S, Wang G, Zhao S, Zhu Y, Wu Y, Chen C 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 2236

    [46]

    Yu P, Wu L M, Zhou L J, Chen L 2014 J. Am. Chem. Soc. 136 480

    [47]

    Zhao S, Gong P, Luo S, Bai L, Lin Z, Tang Y, Zhou Y, Hong M, Luo J 2015 Angew. Chem. Int. Ed. 54 4217

    [48]

    Jiang X, Luo S, Kang L, Gong P, Huang H, Wang S, Lin Z, Chen C 2015 ACS Photonics 2 1183

    [49]

    Chen C T, Liu L J, Wang X Y 2014 Physics 43 520(in Chinese) [陈创天, 刘丽娟, 王晓洋 2014 物理 43 520]

    [50]

    Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S 2017 Angew. Chem. Int. Ed. 56 14119

    [51]

    Zou G, Ye N, Huang L, Lin X 2011 J. Am. Chem. Soc. 133 20001

    [52]

    Kang L, Lin Z, Qin J, Chen C 2013 Sci. Rep. 3 1366

    [53]

    Kang L, Luo S, Peng G, Ye N, Wu Y, Chen C, Lin Z 2015 Inorg. Chem. 54 10533

    [54]

    Wu H, Pan S, Poeppelmeier K R, Li H, Jia D, Chen Z, Fan X, Yang Y, Rondinelli J M, Luo H 2011 J. Am. Chem. Soc. 133 7786

    [55]

    Yu H, Wu H, Pan S, Yang Z, Su X, Zhang F 2012 J. Mater. Chem. 22 9665

    [56]

    Zhao S, Gong P, Bai L, Xu X, Zhang S, Sun Z, Lin Z, Hong M, Chen C, Luo J 2014 Nat. Commun. 5 4019

    [57]

    Zhao S, Gong P, Luo S, Bai L, Lin Z, Ji C, Chen T, Hong M, Luo J 2014 J. Am. Chem. Soc. 136 8560

    [58]

    Zhao S, Kang L, Shen Y, Wang X, Asghar M A, Lin Z, Xu Y, Zeng S, Hong M, Luo J 2016 J. Am. Chem. Soc. 138 2961

    [59]

    Cong R, Wang Y, Kang L, Zhou Z, Lin Z, Yang T 2015 Inorg. Chem. Front. 2 170

    [60]

    Zhang B, Shi G, Yang Z, Zhang F, Pan S 2017 Angew. Chem. Int. Ed. 56 3916

    [61]

    Belokoneva E L, Stefanovich S Y, Dimitrova O V, Ivanova A G 2002 Zh. Neorg. Khim. 47 370

    [62]

    Liang F, Kang L, Gong P, Lin Z, Wu Y 2017 Chem. Mater. 29 7098

    [63]

    Shi G, Wang Y, Zhang F, Zhang B, Yang Z, Hou X, Pan S, Poeppelmeier K R 2017 J. Am. Chem. Soc. 139 10645

    [64]

    Wang Y, Zhang B, Yang Z, Pan S 2018 Angew. Chem. Int. Ed. 57 2150

    [65]

    Luo M, Liang F, Song Y, Zhao D, Xu F, Ye N, Lin Z 2018 J. Am. Chem. Soc. 140 3884

    [66]

    Petrov V 2015 Prog. Quantum Electron. 42 1

    [67]

    Wu K, Yang Z, Pan S 2016 Angew. Chem. Int. Ed. 55 6712

    [68]

    Wu K, Zhang B, Yang Z, Pan S 2017 J. Am. Chem. Soc. 139 14885

    [69]

    Liang F, Kang L, Lin Z, Wu Y 2017 Cryst. Growth Des. 17 2254

    [70]

    Li C, Yin W L, Gong P F, Li X S, Zhou M L, Mar A, Lin Z S, Yao J Y, Wu Y C, Chen C T 2016 J. Am. Chem. Soc. 138 6135

    [71]

    Halasyamani P S, Poeppelmeier K R 1998 Chem. Mater. 10 2753

    [72]

    Banerjee S, Malliakas C D, Jang J I, Ketterson J B, Kanatzidis M G 2008 J. Am. Chem. Soc. 130 12270

    [73]

    Bera T K, Song J H, Freeman A J, Jang J I, Ketterson J B, Kanatzidis M G 2008 Angew. Chem. Int. Ed. 47 7828

    [74]

    Bera T K, Jang J I, Song J H, Malliakas C D, Freeman A J, Ketterson J B, Kanatzidis M G 2010 J. Am. Chem. Soc. 132 3484

    [75]

    Hanna D C, Rutt H N, Stanley C R, Smith R C, Lutherda B 1972 IEEE J. Quantum Electron. 8 317

    [76]

    Li G, Wu K, Liu Q, Yang Z, Pan S 2016 J. Am. Chem. Soc. 138 7422

    [77]

    Liu B W, Zeng H Y, Jiang X M, Wang G E, Li S F, Xu L, Guo G C 2016 Chem. Sci. 7 6273

    [78]

    Lekse J W, Moreau M A, McNerny K L, Yeon J, Halasyamani P S, Aitken J A 2009 Inorg. Chem. 48 7516

    [79]

    Liang F, Kang L, Lin Z, Wu Y, Chen C 2017 Coord. Chem. Rev. 333 57

    [80]

    Parth E 1964 Crystal Chemistry of Tetrahedral Structures (1st Ed.) (New York: Gordon and Breach Science Publishers Inc) pp1--25

    [81]

    Wu K, Yang Z, Pan S 2017 Chem. Commun. 53 3010

    [82]

    Wu K, Pan S 2017 Crystals 7 107

    [83]

    Li G, Chu Y, Zhou Z 2018 Chem. Mater. 30 602

    [84]

    Jantz W, Koidl P, Wettling W 1983 Appl. Phys. A-Mater. Sci. Pro. 30 109

    [85]

    Zhang M J, Jiang X M, Zhou L J, Guo G C 2013 J. Mater. Chem. C 1 4754

    [86]

    Zhang G, Li Y, Jiang K, Zeng H, Liu T, Chen X, Qin J, Lin Z, Fu P, Wu Y, Chen C 2012 J. Am. Chem. Soc. 134 14818

    [87]

    Wu Q, Meng X, Zhong C, Chen X, Qin J 2014 J. Am. Chem. Soc. 136 5683

    [88]

    Zhang X, Jiang X, Li Y, Lin Z, Zhang G, Wu Y 2015 CrystEngComm 17 1050

    [89]

    Kwon O P, Kwon S J, Jazbinsek M, Brunner F D J, Seo J I, Hunziker C, Schneider A, Yun H, Lee Y S, Guenter P 2008 Adv. Funct. Mater. 18 3242

    [90]

    Kalmutzki M, Strobele M, Wackenhut F, Meixner A J, Meyer H J 2014 Inorg. Chem. 53 12540

    [91]

    Divya R, Nair L P, Bijini B R, Nair C M K, Gopakumar N, Babu K R 2017 Physica B 526 37

    [92]

    Xia M, Zhou M, Liang F, Meng X, Yao J, Lin Z, Li R 2018 Inorg. Chem. 57 32

    [93]

    Song Y, Luo M, Liang F, Ye N, Lin Z 2018 Chem. Commun. 54 1445

    [94]

    Liu J W, Wang P, Chen L 2011 Inorg. Chem. 50 5706

    [95]

    Xia M, Jiang X, Lin Z, Li R 2016 J. Am. Chem. Soc. 138 14190

    [96]

    Majchrowski A, Chrunik M, Rudysh M, Piasecki M, Ozga K, Lakshminarayana G, Kityk I V 2017 J. Mater. Sci. 53 1217

    [97]

    Daub M, Krummer M, Hoffmann A, Bayarjargal L, Hillebrecht H 2017 Chem. Eur. J. 23 1331

    [98]

    Zhao S, Yang Y, Shen Y, Zhao B, Li L, Ji C, Wu Z, Yuan D, Lin Z, Hong M, Luo J 2017 Angew. Chem. Int. Ed. 56 540

    [99]

    Peng G, Yang Y, Tang Y H, Luo M, Yan T, Zhou Y, Lin C, Lin Z, Ye N 2017 Chem. Commun. 53 9398

    [100]

    Song Y, Luo M, Liang F, Lin C, Ye N, Yan G, Lin Z 2017 Dalton Trans. 46 15228

    [101]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002

    [102]

    Kumar N, Najmaei S, Cui Q N, Ceballos F, Ajayan P M, Lou J, Zhao H 2013 Phys. Rev. B 87 161403

    [103]

    Li Y, Rao Y, Mak K F, You Y, Wang S, Dean C R, Heinz T F 2013 Nano Lett. 13 3329

    [104]

    Zhou X, Cheng J X, Zhou Y B, Cao T, Hong H, Liao Z M, Wu S W, Peng H L, Liu K H, Yu D P 2015 J. Am. Chem. Soc. 137 7994

    [105]

    Wu L, Patankar S, Morimoto T, Nair N L, Thewalt E, Little A, Analytis J G, Moore J E, Orenstein J 2016 Nat. Phys. 13 350

    [106]

    Mikhailov S A 2011 Phys. Rev. B 84 045432

计量
  • 文章访问数:  3914
  • PDF下载量:  1029
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 修回日期:  2018-04-12
  • 刊出日期:  2018-06-05

基于第一性原理的新型非线性光学晶体探索

  • 1. 中国科学院理化技术研究所, 功能晶体与激光技术重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 天津理工大学, 功能晶体研究院, 天津 300384
  • 通信作者: 林哲帅, zslin@mail.ipc.ac.cn
    基金项目: 

    国家高技术研究发展计划(批准号:2015AA034203)、国家自然科学基金(批准号:91622118,91622124,11174297,51602318)和中国科学院青年创新促进会优秀会员基金资助的课题.

摘要: 非线性光学晶体能对常见波段的激光进行频率转换,从而获得宽波段、可调谐的激光光源.此类光电功能材料在军事和民用领域具有重要的战略价值和应用价值.经过30多年的发展,应用于可见光及邻近波段的非线性光学晶体技术已经基本成熟,但深紫外和中远红外波段的非线性光学晶体技术的发展仍存在诸多不足,还需要在这些波段进行新型优质的非线性光学晶体探索.近年来,为了改变传统低效的炒菜式实验探索,加快新材料研发速度,基于密度泛函理论的第一性原理计算方法在新型非线性光学晶体探索中得到了广泛的应用.本文总结了近几年深紫外和中红外波段非线性光学晶体的新进展,通过介绍几种新型非线性光学晶体材料的研发过程,突出了第一性原理计算在新材料探索过程中起到的关键作用;探讨了非线性光学晶体研发的研究难点与趋势,以及第一性原理方法在未来新材料探索中的重点攻关方向.

English Abstract

参考文献 (106)

目录

    /

    返回文章
    返回