搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木榄醇手性光谱的密度泛函研究

莽朝永 苟高章 刘彩萍 吴克琛

引用本文:
Citation:

木榄醇手性光谱的密度泛函研究

莽朝永, 苟高章, 刘彩萍, 吴克琛

Density functional study on chirospectra of bruguierols

Mang Chao-Yong, Gou Gao-Zhang, Liu Cai-Ping, Wu Ke-Chen
PDF
导出引用
  • 手性光学理论研究有助于解释手性分子的旋光机理和设计新的手性药物.采用B3LYP方法,计算了木榄醇A—C的旋光度和圆二色谱.从分子结构、正则振动和电子结构方面,探索了分子手性微观起源,分析了旋光度和电子圆二色谱的溶剂效应.表明OH的引入可调节分子的手性,甲基和苯环加强了分子的手性.发生在手性骨架上的振动和电子跃迁,加强了分子的手性.溶剂效应减小旋光度、削弱电子圆二色谱.
    The theoretical investigation of the chiral optics is induive to the elucidation of the optically rotational mechanism and the design of the novel chiral drugs. The optical rotation (OR), the vibrational circular dichroism (VCD),and the electronic circular dichroism (ECD) spectra of a series of newly-found bio-active molecules, bruguierols A—C, are calculated with the gradient-corrected density functional theory method. On the basis of molecular structure, normally vibrational modes and electronic structure, we explore the microscopic origin of molecular chirality and discuss the solvent effects of OR and ECD spectra. The results show that the introduction of OH modulates the molecular chirality. The methyl group and the phenyl group enhance the molecular chirality. The normal vibrations and the electronic transitions on the chiral skeleton play critical roles in producing the chiral spectra. The solvent effect decreases OR and weakens the ECD spectra.
    • 基金项目: 云南省教育厅基金(批准号:07Z11621)大理学院引进人才科研启动基金(批准号:KY421040)资助的课题.
    [1]

    Han L, Huang X, Sattler I, Moellmann U, Lin W, Grabley S 2005Planta Med. 71 160

    [2]

    Ramana C V, Salian S R, Gonnade R G 2007 Eur. J. Org. Chem. 5483

    [3]

    Solorio D M, Jennings M P 2007 J. Org. Chem. 72 6621

    [4]

    Wu J Z, Zhen Z B, Zhang Y H, Wu Y K 2008 Acta Chim. Sin. 66 2138 (in Chinese). [吴建忠、甄志彬、张奕华、伍贻康 2008 化学学报 66 2138]

    [5]

    Francisco J F, Amadeo F, Deniz C, Felix R 2009 J. Org. Chem. 74 932

    [6]

    Parr R G, Yang W 1989 Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford)

    [7]

    Freedman T B, Cao X, Oliveira R V, Cass Q B, Nafie L A 2003 Chirality 15 196

    [8]

    Aamouche A, Devlin F J, Stephens P J, Drabowicz J, Bujnicki B, Mikolajczyk M 2000 Chem. Eur. J. 6 4479

    [9]

    Stephens P J, Devlin E J, Schurch S, Hulliger J 2008 Theor. Chem. Account 119 19

    [10]

    Bauernschmitt R, Ahlrichs R 1996 Chem. Phys. Lett. 256 454

    [11]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439

    [12]

    Stratmann R E, Scuseria G E, Frisch M J 1998 J. Chem. Phys. 109 8218

    [13]

    Helgaker T, Jrgensen P 1991 J. Chem. Phys. 95 2595

    [14]

    Bak K L, Jrgensen P, Helgaker T, Ruud K, Jensen H J A 1993 J. Chem. Phys. 98 8873

    [15]

    Autschbach J, Ziegler T, van Gisbergen S J A, Baerends E J 2002 J. Chem. Phys. 116 6930

    [16]

    Becke A D 1988 Phys. Rev. A 38 3098

    [17]

    Lee B, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [18]

    Ditchfield R, Hehre W J, Pople J A 1971 J. Chem. Phys. 54 724

    [19]

    Hehre W J, Ditchfield R, Pople J A 1972 J. Chem. Phys. 56 2257

    [20]

    McLean A D, Chandler G S 1980 J. Chem. Phys. 72 5639

    [21]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650

    [22]

    Miertus S, Scrocco E, Tomasi J 1981 Chem. Phys. 55 117

    [23]

    Mennucci B, Tomasi J 1997 J. Chem. Phys. 106 5151

    [24]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2003 Gaussian 03 (Revision B.05) Gaussian Inc., Pittsburgh P A

    [25]

    McWeeny R 1962 Phys. Rev. 126 1028

    [26]

    Wolinski K, Hilton J F, Pulay P 1990 J. Am. Chem. Soc. 112 8251

    [27]

    Stephens P J, Lowe M A 1985 Annu. Rev. Phys. Chem. 36 213

    [28]

    Moscowitz A 1962 Adv. Chem. Phys. 4 67

    [29]

    SImonato J P, Pecaut J, Marchon J C 1998 J. Am. Chem. Soc. 120 7363

    [30]

    Toronto D, Aarrazin F, Pecaut J, Marchon J C, Shang M, Scheidt W R 1998 Inorg. Chem. 37 526

    [31]

    Mang C Y, Zhao X, Liu C P, Wu K C 2008 Acta Chim. Sin. 66 195 (in Chinese) [莽朝永、赵 霞、刘彩萍 吴克琛 2008 化学学报66 195]

    [32]

    Mang C Y, Li Z G, Wu K C 2010 Chin. Phys. B 19 043601

    [33]

    Yang G C, Wang L, Yang G Z 2003 Chin. Phys. 12 1096

    [34]

    Chen L J, Yao B L, Han J H, Gao P, Chen Y, Wang Y L, Lei M 2008 Acta Phys. Sin 57 5571 (in Chinese) [陈利菊、姚保利、韩俊鹤、郜 鹏、陈 懿、王英利、雷 铭 2008 物理学报57 5571]

  • [1]

    Han L, Huang X, Sattler I, Moellmann U, Lin W, Grabley S 2005Planta Med. 71 160

    [2]

    Ramana C V, Salian S R, Gonnade R G 2007 Eur. J. Org. Chem. 5483

    [3]

    Solorio D M, Jennings M P 2007 J. Org. Chem. 72 6621

    [4]

    Wu J Z, Zhen Z B, Zhang Y H, Wu Y K 2008 Acta Chim. Sin. 66 2138 (in Chinese). [吴建忠、甄志彬、张奕华、伍贻康 2008 化学学报 66 2138]

    [5]

    Francisco J F, Amadeo F, Deniz C, Felix R 2009 J. Org. Chem. 74 932

    [6]

    Parr R G, Yang W 1989 Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford)

    [7]

    Freedman T B, Cao X, Oliveira R V, Cass Q B, Nafie L A 2003 Chirality 15 196

    [8]

    Aamouche A, Devlin F J, Stephens P J, Drabowicz J, Bujnicki B, Mikolajczyk M 2000 Chem. Eur. J. 6 4479

    [9]

    Stephens P J, Devlin E J, Schurch S, Hulliger J 2008 Theor. Chem. Account 119 19

    [10]

    Bauernschmitt R, Ahlrichs R 1996 Chem. Phys. Lett. 256 454

    [11]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439

    [12]

    Stratmann R E, Scuseria G E, Frisch M J 1998 J. Chem. Phys. 109 8218

    [13]

    Helgaker T, Jrgensen P 1991 J. Chem. Phys. 95 2595

    [14]

    Bak K L, Jrgensen P, Helgaker T, Ruud K, Jensen H J A 1993 J. Chem. Phys. 98 8873

    [15]

    Autschbach J, Ziegler T, van Gisbergen S J A, Baerends E J 2002 J. Chem. Phys. 116 6930

    [16]

    Becke A D 1988 Phys. Rev. A 38 3098

    [17]

    Lee B, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [18]

    Ditchfield R, Hehre W J, Pople J A 1971 J. Chem. Phys. 54 724

    [19]

    Hehre W J, Ditchfield R, Pople J A 1972 J. Chem. Phys. 56 2257

    [20]

    McLean A D, Chandler G S 1980 J. Chem. Phys. 72 5639

    [21]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650

    [22]

    Miertus S, Scrocco E, Tomasi J 1981 Chem. Phys. 55 117

    [23]

    Mennucci B, Tomasi J 1997 J. Chem. Phys. 106 5151

    [24]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2003 Gaussian 03 (Revision B.05) Gaussian Inc., Pittsburgh P A

    [25]

    McWeeny R 1962 Phys. Rev. 126 1028

    [26]

    Wolinski K, Hilton J F, Pulay P 1990 J. Am. Chem. Soc. 112 8251

    [27]

    Stephens P J, Lowe M A 1985 Annu. Rev. Phys. Chem. 36 213

    [28]

    Moscowitz A 1962 Adv. Chem. Phys. 4 67

    [29]

    SImonato J P, Pecaut J, Marchon J C 1998 J. Am. Chem. Soc. 120 7363

    [30]

    Toronto D, Aarrazin F, Pecaut J, Marchon J C, Shang M, Scheidt W R 1998 Inorg. Chem. 37 526

    [31]

    Mang C Y, Zhao X, Liu C P, Wu K C 2008 Acta Chim. Sin. 66 195 (in Chinese) [莽朝永、赵 霞、刘彩萍 吴克琛 2008 化学学报66 195]

    [32]

    Mang C Y, Li Z G, Wu K C 2010 Chin. Phys. B 19 043601

    [33]

    Yang G C, Wang L, Yang G Z 2003 Chin. Phys. 12 1096

    [34]

    Chen L J, Yao B L, Han J H, Gao P, Chen Y, Wang Y L, Lei M 2008 Acta Phys. Sin 57 5571 (in Chinese) [陈利菊、姚保利、韩俊鹤、郜 鹏、陈 懿、王英利、雷 铭 2008 物理学报57 5571]

  • [1] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究. 物理学报, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [2] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究. 物理学报, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [6] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [7] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究. 物理学报, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [8] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] 朱洪强, 冯庆. 光学气敏材料金红石相二氧化钛(110)面吸附CO分子的微观特性机理研究. 物理学报, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [10] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [11] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [12] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 李雪梅, 张建平. 5-(2-芳氧甲基苯并咪唑-1-亚甲基)-1,3,4噁二唑-2-硫酮的结构,光谱与热力学性质的理论研究. 物理学报, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [15] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响. 物理学报, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 蔡静, 曾薇, 李权, 骆开均, 赵可清. 取代基对8-羟基喹啉金属配合物电子光谱和二阶非线性光学性质的影响. 物理学报, 2009, 58(8): 5259-5265. doi: 10.7498/aps.58.5259
    [18] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [19] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
计量
  • 文章访问数:  7990
  • PDF下载量:  677
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-26
  • 修回日期:  2010-07-13
  • 刊出日期:  2011-02-05

/

返回文章
返回