搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InCn+(n=110)团簇的密度泛函理论研究

张陈俊 王养丽 陈朝康

引用本文:
Citation:

InCn+(n=110)团簇的密度泛函理论研究

张陈俊, 王养丽, 陈朝康

Density functional theory of InCn+(n=110) clusters

Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang
PDF
导出引用
  • 利用密度泛函理论的B3LYP方法,在LANL2DZ水平上对碳基混合团簇InCn+(n=110)进行了系统研究,得到了这个团簇体系的最稳定几何构型以及基态结构的电子态、最低振动频率、总能量、自旋污染期望值、偶极距、转动常数等.计算结果显示:团簇的最稳定结构是In原子位于碳链末端的直线型构型;n为偶数的基态是三重态,除InC+外,n为奇数的基态是单态.通过对增量结合能和能量二阶差分的计算和分析可以得出,随着团簇尺寸的增加,团簇的稳定性表现出强烈的奇强偶弱振荡规律.电离能的计算结果进一步证实了这种振荡规律的正确性.对系列团簇基态的磁性研究表明,团簇的磁矩随团簇尺寸的增加呈现出明显的奇弱偶强振荡规律.极化率的计算结果显示,极化率张量的平均值及各向异性不变量都随着团簇尺寸的增大而增大.
    Small indium-doped carbon clusters InCn+(n=110) are systematically studied by the density functional theory at the B3 LYP/LANL2 DZ level. The computed properties include equilibrium geometries, electronic energies, vibrational frequencies, dipole moments and rotational constants for individual species. The calculation results show that the open-chain linear isomers with the indium atom bound to the end of the carbon chain are the most stable geometry in all cases. There must exist a cyclic or fan structure in the metastable or the third stable structure of cluster. The bigger the size of the cluster, the more obvious the stability of the structure is. The electronic ground state is found to be alternately a triplet for even n and a singlet for odd n with the only exception of InC+. It is generally observed that the spin contamination is not serious for all electronic ground states because the s2 values are uniform and in general deviate slightly from the pure spin values, and the B3 LYP wave functions are nearly spin-pure. It is also found that in the lowest-energy linear structure, the InC bond is longer (from 2.319 to 2.850 ) than the corresponding CC bonds in a range from 1.268 to 1.360 . The CC distances can be assimilated to moderately strong double bonds underlying a clear bonding in the corresponding structures. In addition, we observe a clear alternation in CC distances. The CoddCeven distances are shorter than the CevenCodd ones which mainly results from the charge distribution and spin density. According to the calculation and analysis of the incremental binding energy and the second difference we can deduce an even-odd alternation in the cluster stability for the linear InCn+, with their n-odd members being more stable than the adjacent even-numbered ones. This parity effect also appears in the adiabatic ionization potential curves. The analysis of magnetic properties shows the even-odd alternation with n-even clusters presenting higher values of magnetic moment than n-odd ones. The study of the polarizability indicates that the average values of both the polarization tensors and the anisotropic invariants increase with the size of cluster increasing.
      通信作者: 张陈俊, xbdxzcj@163.com
    • 基金项目: 国家自然科学基金(批准号:51575420)和陕西省自然科学基金(批准号:2016JM1027)资助的课题.
      Corresponding author: Zhang Chen-Jun, xbdxzcj@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51575420) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JM1027).
    [1]

    Pauzat F, Ellinger Y 1989 Astron. Astrophys. 216 305

    [2]

    Maccarthy M T, Kalmus P, Gottlieb C A 1996 Astrophysics 467 125

    [3]

    Cernicharo J, Guelin M 1996 Astron. Astrophysics 309 27

    [4]

    Guelin M, Cernicharo J, Travers M J 1997 Astrophysics 37 1

    [5]

    Schermann G, Grosser T, Hampel F 1997 Chem. Eur. J. 3 1105

    [6]

    Dembinski R, Bartik T, Bartik B 2000 J. Am. Chem. Soc. 122 10

    [7]

    Becker S, Dietze H 1988 Int. J. Mass Spectrom. 82 287

    [8]

    Consalvo D, Mele A, Stranges D 1989 Int. J. Mass Spectrom. 91 319

    [9]

    Liu Z Y, Wang C R, Huang R B 1995 Int. J. Mass Spectrom. 141 201

    [10]

    Liu Z Y, Huang R B, Tang Z C 1998 J. Chem. Phys. 229 335

    [11]

    Chuchev K, BelBruno J J 2004 J. Phys. Chem. 108 5226

    [12]

    Liang J X, Zhang C 2010 Acta Chim. Sin. 68 7

    [13]

    Wang C R, Huang R B, Liu Z Y 1995 Chem. Phys. Lett. 242 55

    [14]

    Nakajima A, Taguwa T, Nakao K 1995 J. Chem. Phys. 103 2050

    [15]

    Pascoli G, Lavendy H 2002 Opt. Plasma Phys. 19 339

    [16]

    Largo A, Redondo P, Barriento S 2002 J. Phys. Chem. A 106 4217

    [17]

    Li G L, Tang Z C 2003 J. Phys. Chem. A 107 5317

    [18]

    Chertihin G V, Andrews L, Taylor P R 1994 J. Am. Chem. Soc. 116 3513

    [19]

    Zhang C J, Jiang Z Y, Wang Y L 2013 Comput. Theor. Chem. 1004 12

    [20]

    Wadt W R, Hay P J 1985 J. Chem. Phys. 82 284

    [21]

    Jia L C, Zhao R N, Han J G, Sheng L S, Cai W P 2008 J. Phys. Chem. A 112 4375

    [22]

    Li G L, Xing X P, Tang Z C 2003 J. Chem. Phys. 118 6884

    [23]

    Qi J Y, Dang L, Chen M D, Wu W, Zhang Q E, Au C T 2008 J. Phys. Chem. A 112 12456

    [24]

    Li G L, Wang C Y 2007 J. Mol. Struct. 824 48

    [25]

    Wang L J, Zhang C J, Wu H S 2005 Acta Phys. Chim. Sin. 21 244(in Chinese) [王利江, 张聪杰, 武海顺 2005 物理化学学报 21 244]

    [26]

    Ma W J, Song X, Zhang X M, Wu H S 2010 Acta Phys. Chim. Sin. 26 1396(in Chinese) [马文瑾, 宋翔, 张献明, 武海顺 2010 物理化学学报 26 1396]

    [27]

    Cheng L J 2012 J.Chem. Phys. 136 104301

    [28]

    Cheng L J, Yang J L 2013 J. Chem. Phys. 138 141101

    [29]

    Li L F, Cheng L J 2013 J. Chem. Phys. 138 094312

    [30]

    Feng Y Q, Cheng L J 2015 RSC Adv. 5 62543

  • [1]

    Pauzat F, Ellinger Y 1989 Astron. Astrophys. 216 305

    [2]

    Maccarthy M T, Kalmus P, Gottlieb C A 1996 Astrophysics 467 125

    [3]

    Cernicharo J, Guelin M 1996 Astron. Astrophysics 309 27

    [4]

    Guelin M, Cernicharo J, Travers M J 1997 Astrophysics 37 1

    [5]

    Schermann G, Grosser T, Hampel F 1997 Chem. Eur. J. 3 1105

    [6]

    Dembinski R, Bartik T, Bartik B 2000 J. Am. Chem. Soc. 122 10

    [7]

    Becker S, Dietze H 1988 Int. J. Mass Spectrom. 82 287

    [8]

    Consalvo D, Mele A, Stranges D 1989 Int. J. Mass Spectrom. 91 319

    [9]

    Liu Z Y, Wang C R, Huang R B 1995 Int. J. Mass Spectrom. 141 201

    [10]

    Liu Z Y, Huang R B, Tang Z C 1998 J. Chem. Phys. 229 335

    [11]

    Chuchev K, BelBruno J J 2004 J. Phys. Chem. 108 5226

    [12]

    Liang J X, Zhang C 2010 Acta Chim. Sin. 68 7

    [13]

    Wang C R, Huang R B, Liu Z Y 1995 Chem. Phys. Lett. 242 55

    [14]

    Nakajima A, Taguwa T, Nakao K 1995 J. Chem. Phys. 103 2050

    [15]

    Pascoli G, Lavendy H 2002 Opt. Plasma Phys. 19 339

    [16]

    Largo A, Redondo P, Barriento S 2002 J. Phys. Chem. A 106 4217

    [17]

    Li G L, Tang Z C 2003 J. Phys. Chem. A 107 5317

    [18]

    Chertihin G V, Andrews L, Taylor P R 1994 J. Am. Chem. Soc. 116 3513

    [19]

    Zhang C J, Jiang Z Y, Wang Y L 2013 Comput. Theor. Chem. 1004 12

    [20]

    Wadt W R, Hay P J 1985 J. Chem. Phys. 82 284

    [21]

    Jia L C, Zhao R N, Han J G, Sheng L S, Cai W P 2008 J. Phys. Chem. A 112 4375

    [22]

    Li G L, Xing X P, Tang Z C 2003 J. Chem. Phys. 118 6884

    [23]

    Qi J Y, Dang L, Chen M D, Wu W, Zhang Q E, Au C T 2008 J. Phys. Chem. A 112 12456

    [24]

    Li G L, Wang C Y 2007 J. Mol. Struct. 824 48

    [25]

    Wang L J, Zhang C J, Wu H S 2005 Acta Phys. Chim. Sin. 21 244(in Chinese) [王利江, 张聪杰, 武海顺 2005 物理化学学报 21 244]

    [26]

    Ma W J, Song X, Zhang X M, Wu H S 2010 Acta Phys. Chim. Sin. 26 1396(in Chinese) [马文瑾, 宋翔, 张献明, 武海顺 2010 物理化学学报 26 1396]

    [27]

    Cheng L J 2012 J.Chem. Phys. 136 104301

    [28]

    Cheng L J, Yang J L 2013 J. Chem. Phys. 138 141101

    [29]

    Li L F, Cheng L J 2013 J. Chem. Phys. 138 094312

    [30]

    Feng Y Q, Cheng L J 2015 RSC Adv. 5 62543

  • [1] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [2] 阴敏, 张敏, 吕瑾, 武海顺. TM@Cu12N12团簇磁性第一性原理研究. 物理学报, 2019, 68(20): 203102. doi: 10.7498/aps.68.20190737
    [3] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究. 物理学报, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [4] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [5] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [6] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [7] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究. 物理学报, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [9] 门福殿, 王海堂, 何晓刚. 强磁场中Fermi气体的稳定性及顺磁性. 物理学报, 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [10] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [11] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [12] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究. 物理学报, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [13] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究. 物理学报, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [14] 李仁全, 潘春玲, 文玉华, 朱梓忠. Ag原子链的结构稳定性和磁性. 物理学报, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [15] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] 陈宣, 彭霞, 邓开明, 肖传云, 胡凤兰, 谭伟石. 笼状Au20内掺M13(M=Fe,Ti)团簇磁性的密度泛函计算研究. 物理学报, 2009, 58(8): 5370-5375. doi: 10.7498/aps.58.5370
    [17] 雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华. 密度泛函理论研究BnNi(n=6—12)团簇的结构和磁性. 物理学报, 2008, 57(9): 5491-5499. doi: 10.7498/aps.57.5491
    [18] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [19] 雷雪玲, 王清林, 闫玉丽, 赵文杰, 杨 致, 罗有华. 利用密度泛函理论研究BnNi(n≤5)小团簇的结构和磁性. 物理学报, 2007, 56(8): 4484-4490. doi: 10.7498/aps.56.4484
    [20] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用. 物理学报, 2005, 54(3): 1149-1155. doi: 10.7498/aps.54.1149
计量
  • 文章访问数:  3017
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-15
  • 修回日期:  2018-03-14
  • 刊出日期:  2018-06-05

InCn+(n=110)团簇的密度泛函理论研究

  • 1. 西安航空学院理学院, 西安 710077;
  • 2. 西安武警工程大学理学院, 西安 710086
  • 通信作者: 张陈俊, xbdxzcj@163.com
    基金项目: 国家自然科学基金(批准号:51575420)和陕西省自然科学基金(批准号:2016JM1027)资助的课题.

摘要: 利用密度泛函理论的B3LYP方法,在LANL2DZ水平上对碳基混合团簇InCn+(n=110)进行了系统研究,得到了这个团簇体系的最稳定几何构型以及基态结构的电子态、最低振动频率、总能量、自旋污染期望值、偶极距、转动常数等.计算结果显示:团簇的最稳定结构是In原子位于碳链末端的直线型构型;n为偶数的基态是三重态,除InC+外,n为奇数的基态是单态.通过对增量结合能和能量二阶差分的计算和分析可以得出,随着团簇尺寸的增加,团簇的稳定性表现出强烈的奇强偶弱振荡规律.电离能的计算结果进一步证实了这种振荡规律的正确性.对系列团簇基态的磁性研究表明,团簇的磁矩随团簇尺寸的增加呈现出明显的奇弱偶强振荡规律.极化率的计算结果显示,极化率张量的平均值及各向异性不变量都随着团簇尺寸的增大而增大.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回