搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中性和阳离子丁酮团簇的结构及稳定性的理论研究

杨雪 丁大军 胡湛 赵国明

引用本文:
Citation:

中性和阳离子丁酮团簇的结构及稳定性的理论研究

杨雪, 丁大军, 胡湛, 赵国明

Theoretical study on the structure and stability of neutral and cationic butanone clusters

Yang Xue, Ding Da-Jun, Hu Zhan, Zhao Guo-Ming
PDF
导出引用
  • 使用密度泛函B3LYP方法,在6-31G*和6-311+G**基组水平上计算中性和阳离子丁酮团簇(CH3COC2H5)n和(CH3COC2H5)n+(n 7)的稳定结构,并比较不同尺寸团簇之间的相对稳定性.中性和阳离子丁酮团簇的结构具有相似性:n=37时,组成团簇的丁酮的平均几何参数基本相同,单环结构最稳定;随着团簇尺寸的增加,双环结构的稳定性逐渐上升.通过平均结合能、一阶差分能、HOMO-LUMO能隙等计算分析可知:在所研究的各种尺寸团簇中,(CH3COC2H5)3是最稳定的中性团簇,与实验中的最强峰对应;(CH3COC2H5)4+是最稳定的阳离子团簇.通过电离能计算得到丁酮分子的垂直电离能为9.535 eV与实验值相符,同时证明中性和阳离子丁酮二元团簇的结构变化较大.研究结果为实验中丁酮团簇碎片离子的形成机理提供一定的理论依据,并且为进一步研究酮类分子团簇的生长规律提供有价值的信息.
    The molecular clusters have attracted increasing attention in recent years due to their applications in areas of laser, synchrotron radiation, molecular beam and time-of-flight mass spectrometry. The cluster structures can be speculated by the mass spectrum measurement and predicted by the quantum chemical methods. It is very important for understanding the solvation kinetics and nucleation to explore the formation and growth of clusters. Meanwhile, it is also beneficial to understanding the atomic or intermolecular interactions in the clusters. The molecular clusters have been studied in our previous work. The acetone clusters (CH3COCH3)n (n 12) were observed by 355 nm pumping laser. The structures of (CH3COCH3)n with n=2-7 were calculated by density functional theory, and some structures of clusters with low energy were given. Subsequently, several butanone cluster fragment ions and protonated butanone (CH3COC2H5, which is formed by taking a methyl change into ethyl from acetone CH3COCH3) clusters were observed by measuring the mass spectra under the irradiations of 355 nm and 118 nm laser lights, respectively. It is important to determine the stable cluster structures and explain the dynamics of the clusters by theoretical calculation. The stable geometric structures of neutral and cationic butanone clusters are optimized at B3LYP/6-31G* and B3LYP/6-311+G** levels based on the density functional theory. The structural characteristics and stabilities of butanone clusters with various sizes are also analyzed. The average binding energy, first-order difference energy, HOMO-LUMO gap and ionized energy are further discussed systematically in the present work. The results show that the structures of (CH3COC2H5)n and (CH3COC2H5)n+ have similar characteristics, single-ring structure is the most stable for them when n=3-7, and the structures also occur in some hydrogen bonded clusters, such as (H2O)n (n=3-6), (NH3)n (n=3-6), (CH3OH)n (n=3-6), and (HCHO)n (n=3-8). Moreover, the stability of double ring structure rises with cluster size increasing. The (CH3COC2H5)3 has the best stability in neutral clusters (CH3COC2H5)n with n=2-7, and it corresponds to the strongest peak in experiment. In addition, the (CH3COC2H5)4+ is the most stable in the cationic clusters with corresponding sizes. Furthermore, the vertical ionization energy of butanone molecule is 9.535 eV via theoretical calculation, which is in agreement with the experimental data. At the same time, the structures of (CH3COC2H5)2+ and (CH3COC2H5)2 are proved to be different by the ionization energy. The results provide a theoretical basis for the formation mechanism of butanone cluster fragment ions in experiment, and it is beneficial to the further study of growing the ketone clusters.
      通信作者: 杨雪, yangxue11791539@163.com
    • 基金项目: 国家自然科学基金(批准号:11447194)和吉林省教育厅十三五科学技术项目(批准号:JJKH20170215KJ)资助的课题.
      Corresponding author: Yang Xue, yangxue11791539@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447194) and the 13th Five-Year Science and Technology Program of the Education Department of Jilin Province, China (Grant No. JJKH20170215KJ).
    [1]

    Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 93601

    [2]

    Zhang C Y, Liu X M 2015 Acta Phys. Sin. 64 163601 (in Chinese) [张春艳, 刘显明 2015 物理学报 64 163601]

    [3]

    Etienne G, Daniel G, Gabriele S, Ewald J, Peter L, Gerard M, Daniel M N, Knut R A 2008 Phys. Chem. Chem. Phys. 10 1502

    [4]

    Wang X B, Kowalski K, Wang L S, Xantheas S S 2010 J. Chem. Phys. 132 124306

    [5]

    Wei S, Purnell J, Buzza S A, Stanley R J, Castleman A W 1992 J. Chem. Phys. 97 9480

    [6]

    Purnell J, Wei S, Buzza S A, Castleman Jr A W 1993 J. Phys. Chem. 97 12530

    [7]

    Zhang S D, Zhu X J, Wang Y, Kong X H 2007 Acta Phys. Chim. Sin. 23 379 (in Chinese) [张树东, 朱湘君, 王艳, 孔祥和 2007 物理化学学报 23 379]

    [8]

    Xantheas S S, Dunning Jr T H 1993 J. Chem. Phys. 99 8774

    [9]

    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni A D, Gadre S R 2001 J. Phys. Chem. A 105 10525

    [10]

    Gadre S R, Yeole S D, Sahu N 2014 Chem. Rev. 114 12132

    [11]

    Bačić Z, Miller R E 1996 J. Phys. Chem. 100 12945

    [12]

    Janeiro-Barral P E, Mella M, Curotto E 2008 J. Phys. Chem. A 112 2888

    [13]

    Buck U 1994 J. Phys. Chem. 98 5190

    [14]

    Cabaleiro-Lago E M, Ros M A 2000 J. Chem. Phys. 112 2155

    [15]

    Jin R, Chen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese) [金蓉, 谌晓洪 2012 物理学报 61 093103]

    [16]

    Xu X S, Hu Z, Jin M X, Liu H, Ding D J 2002 Nucl. Phys. Rev. 19 227

    [17]

    Hu Z, Jin M X, Xu X S, Liu H, Ding D J 2003 Chem. J. Chin. Univ. 24 112 (in Chinese) [胡湛, 金明星, 许雪松, 刘航, 丁大军 2003 高等学校化学学报 24 112]

    [18]

    Hu Z, Jin M X, Xu X S, Ding D J 2006 Front. Phys. China 1 275

    [19]

    Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chin. Univ. 27 508

    [20]

    Yang X 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨雪 2013 博士学位论文 (长春: 吉林大学)]

    [21]

    Li Y, Hu Y J, Lu R C, Wang X Y 2000 Acta Phys. Chim. Sin. 16 810 (in Chinese) [李月, 胡勇军, 吕日昌, 王秀岩 2000 物理化学学报 16 810]

    [22]

    Wang R, Kong X H, Zhang S D 2006 Spectrum Lab. 23 417 (in Chinese) [王仍, 孔祥和, 张树东 2006 光谱实验室 23 417]

    [23]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [24]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [25]

    Shimanouchi T 1972 J. Phys. Chem. Ref. Data 1 189

    [26]

    Mouvier G, Hernandez R 1975 Org. Mass Spectrom. 10 958

    [27]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01 (Pittsburgh, PA: Gaussian Inc.)

    [28]

    Guan J W, Hu Y J, Xie M, Bernstein E R 2012 Chem. Phys. 405 117

    [29]

    Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995

    [30]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [31]

    Chiranjib M, Kulshreshtha S K 2006 Phys. Rev. B 73 155427

    [32]

    Albrecht L, Boyd R J 2015 Comput. Theor. Chem. 1053 328

    [33]

    Li X B, Wang H Y, Yang X D, Zhu Z H 2007 J. Chem. Phys. 126 084505

  • [1]

    Liu D D, Zhang H 2010 Chin. Phys. Lett. 27 93601

    [2]

    Zhang C Y, Liu X M 2015 Acta Phys. Sin. 64 163601 (in Chinese) [张春艳, 刘显明 2015 物理学报 64 163601]

    [3]

    Etienne G, Daniel G, Gabriele S, Ewald J, Peter L, Gerard M, Daniel M N, Knut R A 2008 Phys. Chem. Chem. Phys. 10 1502

    [4]

    Wang X B, Kowalski K, Wang L S, Xantheas S S 2010 J. Chem. Phys. 132 124306

    [5]

    Wei S, Purnell J, Buzza S A, Stanley R J, Castleman A W 1992 J. Chem. Phys. 97 9480

    [6]

    Purnell J, Wei S, Buzza S A, Castleman Jr A W 1993 J. Phys. Chem. 97 12530

    [7]

    Zhang S D, Zhu X J, Wang Y, Kong X H 2007 Acta Phys. Chim. Sin. 23 379 (in Chinese) [张树东, 朱湘君, 王艳, 孔祥和 2007 物理化学学报 23 379]

    [8]

    Xantheas S S, Dunning Jr T H 1993 J. Chem. Phys. 99 8774

    [9]

    Maheshwary S, Patel N, Sathyamurthy N, Kulkarni A D, Gadre S R 2001 J. Phys. Chem. A 105 10525

    [10]

    Gadre S R, Yeole S D, Sahu N 2014 Chem. Rev. 114 12132

    [11]

    Bačić Z, Miller R E 1996 J. Phys. Chem. 100 12945

    [12]

    Janeiro-Barral P E, Mella M, Curotto E 2008 J. Phys. Chem. A 112 2888

    [13]

    Buck U 1994 J. Phys. Chem. 98 5190

    [14]

    Cabaleiro-Lago E M, Ros M A 2000 J. Chem. Phys. 112 2155

    [15]

    Jin R, Chen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese) [金蓉, 谌晓洪 2012 物理学报 61 093103]

    [16]

    Xu X S, Hu Z, Jin M X, Liu H, Ding D J 2002 Nucl. Phys. Rev. 19 227

    [17]

    Hu Z, Jin M X, Xu X S, Liu H, Ding D J 2003 Chem. J. Chin. Univ. 24 112 (in Chinese) [胡湛, 金明星, 许雪松, 刘航, 丁大军 2003 高等学校化学学报 24 112]

    [18]

    Hu Z, Jin M X, Xu X S, Ding D J 2006 Front. Phys. China 1 275

    [19]

    Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chin. Univ. 27 508

    [20]

    Yang X 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨雪 2013 博士学位论文 (长春: 吉林大学)]

    [21]

    Li Y, Hu Y J, Lu R C, Wang X Y 2000 Acta Phys. Chim. Sin. 16 810 (in Chinese) [李月, 胡勇军, 吕日昌, 王秀岩 2000 物理化学学报 16 810]

    [22]

    Wang R, Kong X H, Zhang S D 2006 Spectrum Lab. 23 417 (in Chinese) [王仍, 孔祥和, 张树东 2006 光谱实验室 23 417]

    [23]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [24]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [25]

    Shimanouchi T 1972 J. Phys. Chem. Ref. Data 1 189

    [26]

    Mouvier G, Hernandez R 1975 Org. Mass Spectrom. 10 958

    [27]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01 (Pittsburgh, PA: Gaussian Inc.)

    [28]

    Guan J W, Hu Y J, Xie M, Bernstein E R 2012 Chem. Phys. 405 117

    [29]

    Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995

    [30]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [31]

    Chiranjib M, Kulshreshtha S K 2006 Phys. Rev. B 73 155427

    [32]

    Albrecht L, Boyd R J 2015 Comput. Theor. Chem. 1053 328

    [33]

    Li X B, Wang H Y, Yang X D, Zhu Z H 2007 J. Chem. Phys. 126 084505

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [3] 王转玉, 康伟丽, 贾建峰, 武海顺. Ti2Bn(n=1–10)团簇的结构与稳定性:基于从头算的研究. 物理学报, 2014, 63(23): 233102. doi: 10.7498/aps.63.233102
    [4] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [5] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [6] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [7] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [8] 陈宣, 袁勇波, 邓开明, 肖传云, 陆瑞锋, 阚二军. MnxSny(x=2,3,4; y=18,24,30)团簇几何结构的密度泛函研究. 物理学报, 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [9] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [10] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究. 物理学报, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究. 物理学报, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [13] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [14] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [16] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究. 物理学报, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [19] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  3049
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-18
  • 修回日期:  2017-11-13
  • 刊出日期:  2018-02-05

中性和阳离子丁酮团簇的结构及稳定性的理论研究

  • 1. 吉林化工学院理学院, 吉林 132022;
  • 2. 吉林大学原子与分子物理研究所, 长春 130012
  • 通信作者: 杨雪, yangxue11791539@163.com
    基金项目: 国家自然科学基金(批准号:11447194)和吉林省教育厅十三五科学技术项目(批准号:JJKH20170215KJ)资助的课题.

摘要: 使用密度泛函B3LYP方法,在6-31G*和6-311+G**基组水平上计算中性和阳离子丁酮团簇(CH3COC2H5)n和(CH3COC2H5)n+(n 7)的稳定结构,并比较不同尺寸团簇之间的相对稳定性.中性和阳离子丁酮团簇的结构具有相似性:n=37时,组成团簇的丁酮的平均几何参数基本相同,单环结构最稳定;随着团簇尺寸的增加,双环结构的稳定性逐渐上升.通过平均结合能、一阶差分能、HOMO-LUMO能隙等计算分析可知:在所研究的各种尺寸团簇中,(CH3COC2H5)3是最稳定的中性团簇,与实验中的最强峰对应;(CH3COC2H5)4+是最稳定的阳离子团簇.通过电离能计算得到丁酮分子的垂直电离能为9.535 eV与实验值相符,同时证明中性和阳离子丁酮二元团簇的结构变化较大.研究结果为实验中丁酮团簇碎片离子的形成机理提供一定的理论依据,并且为进一步研究酮类分子团簇的生长规律提供有价值的信息.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回