-
本文在第一性原理计算基础上结合非平衡格林函数方法, 研究了量子干涉效应对连接镍电极的二噻吩硼烷(dithienoborepin, DTB)分子结自旋输运性质的影响, 并通过氨基和硝基钝化实现了对二噻吩硼烷分子异构体(DTB-A和DTB-B)的区分. 结果表明, 原始的DTB-A和DTB-B分子结在费米能级两侧都有一个自旋向上透射峰和一个自旋向下透射峰, 且两个透射峰的能量位置和高度基本相同. 因此, 原始DTB-A和DTB-B分子结的自旋向上和自旋向下电流曲线基本重合, 不能被明显区分. 然而, 研究发现量子干涉效应能不同程度地增强氨基钝化DTB-A分子结费米能级两侧分子轨道的自旋极化输运能力, 并减弱氨基钝化DTB-B分子结费米能级两侧分子轨道的自旋极化输运能力. 此外, 研究还发现量子干涉效应可以显著提高硝基钝化DTB-B分子结费米能级两侧分子轨道的自旋极化输运能力, 同时减弱硝基钝化DTB-A分子结费米能级两侧分子轨道的自旋极化输运能力. 由于量子干涉效应对氨基和硝基钝化的DTB异构体分子结自旋输运能力有不同的调制作用, 因此可以通过测量氨基和硝基钝化分子结的自旋电流值来区分DTB分子的两种异构体.Previous research results show that the conductance difference in molecular junction caused by quantum interference (QI) effect is an important way to identify isomers or improve the recognition sensitivity. Recently, single-molecule conductance of two fully π-conjugated dithienoborepin (DTB) isomers (DTB-A and DTB-B) with tricoordinate boron centers has been measured by using the scanning tunneling microscopy break junction technique. The result shows that QI can enhance chemical responsivity in single-molecule DTB junction. In this work, the first-principles method based on density functional theory and non-equilibrium Green's function is used to study the influence of QI effect on spin-transport property of DTB molecular junction connected to the nickel electrode, and the purpose of distinguishing DTB isomers (DTB-A and DTB-B) is realized by using amino and nitro passivation. The results show that the pristine DTB-A molecule and DTB-B molecule both have a up-spin transmission peak dominated by HOMO and a down-spin transmission peak dominated by LUMO on both sides of the Fermi level, and the energy positions and coefficients of two transmission peaks are basically the same. Therefore, the up-spin and down-spin current curves of the two junctions basically coincide, so that it is impossible to clearly distinguish the two isomers of DTB molecule simply by spin current. The QI can enhance the spin-polarized transport capability of two orbitals of amino-passivated DTB-A molecule to varying degrees but weaken the spin-polarized transport capability of two orbitals of amino-passivated DTB-B molecule. Therefore, the current of DTB-A molecular junction passivated by amino group is always higher than that of DTB-B molecular junction passivated by amino group. However, the QI can greatly enhance the spin-polarized transport capability of two orbitals of nitro-passivated DTB-B molecule but weaken the spin-polarized transport capability of two orbitals of nitro-passivated DTB-A molecule. Therefore, the current of DTB-B molecular junction passivated by nitro is always higher than that of DTB-A molecular junction passivated by nitro. Because the QI has different effects on the spin-transport capability of DTB-A and DTB-B passivated by amino or nitro group, so the two isomers of DTB molecule can be distinguished by measuring the spin current value. The above conclusions provide more theoretical guidance for the practical preparation of spin molecular junctions and the regulation of their spin-transport performance in the future.
-
Keywords:
- first principles /
- density functional theory /
- molecular device /
- quantum interference /
- spin-transport
[1] Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar
[2] Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S J 2014 Nat. Nanotechnol. 9 830Google Scholar
[3] Koley S, Chakrabarti S 2018 Chem. Eur. J. 24 5876Google Scholar
[4] Sharma P, Bernard L S, Bazigos A, Magrez A, Ionescu A M 2015 ACS Nano 9 620Google Scholar
[5] Kumar S, Wang Z, Davila N, Kumari N, Norris K J, Huang X, Strachan J P, Vine D, Kilcoyne A L D, Nishi Y, Williams R S 2017 Nat. Commun. 8 658Google Scholar
[6] Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D, Wang C K 2019 Physica E 106 270Google Scholar
[7] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar
[8] Komeda J, Takada K, Maeda H, Fukui N, Tsuji T, Nishihara H 2022 Chem. Eur. J. 28 e202201316Google Scholar
[9] Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Surf. Sci. 519 146203Google Scholar
[10] Petersen M Å, Rasmussen B, Andersen N N, Sauer S P A, Nielsen M B, Beeren S R, Pittelkow M 2017 Chem. Eur. J. 23 17010Google Scholar
[11] Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar
[12] Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar
[13] Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar
[14] Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar
[15] Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar
[16] Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar
[17] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar
[18] Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D, Sadeghi H, Zhang R, Pi J, Chen L, Huang X, Li R, Liu J, Shi J, Hong W, Lambert C J, Bryce M R 2018 J. Phys. Chem. C 122 14965Google Scholar
[19] Liu X, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W, Lambert C J, Liu S X 2017 Angew. Chem. 129 179Google Scholar
[20] Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar
[21] Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar
[22] Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar
[23] Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar
[24] Yang G, Sangtarash S, Liu Z, Li X, Sadeghi H, Tan Z, Li R, Zheng J, Dong X, Liu J, Yang Y, Shi J, Xiao Z, Zhang G, Lambert C, Hong W, Zhang D 2017 Chem. Sci. 8 7505Google Scholar
[25] Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler D R, Miyazaki T, Xiang L, Asai Y, Zhou G, Tao N 2019 Nat. Mater. 18 357Google Scholar
[26] Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar
[27] Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W 2019 Nat. Mater. 18 364Google Scholar
[28] Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen Z B, Shi J, Xiao Z, Hong W, Tian Z Q 2018 Chem. Sci. 9 5033Google Scholar
[29] Liu J, Zhao X, Al-Galiby Q, Huang X, Zheng J, Li R, Huang C, Yang Y, Shi J, Manrique D Z, Lambert C J, Bryce M R, Hong W 2017 Angew. Chem. 129 13241Google Scholar
[30] Cai S, Deng W, Huang F, Chen L, Tang C, He W, Long S, Li R, Tan Z, Liu J, Shi J, Liu Z, Xiao Z, Zhang D, Hong W 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar
[31] Ozawa H, Baghernejad M, Al-Owaedi O A, Kaliginedi V, Nagashima T, Ferrer J, Wandlowski T, García-Suárez V M, Broekmann P, Lambert C J, Haga M A 2016 Chem. Eur. J. 22 12732Google Scholar
[32] Greenwald J E, Cameron J, Findlay N J, Fu T, Gunasekaran S, Skabara P J, Venkataraman L 2021 Nat. Nanotechnol. 16 313Google Scholar
[33] Trasobares J, Vuillaume D, Théron D, Clément N 2016 Nat. Commun. 7 12850Google Scholar
[34] Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Phys. E 128 114542Google Scholar
[35] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar
[36] Fan Z Q, Xie F, Jiang X W, Wei Z, Li S S 2016 Carbon 110 200Google Scholar
[37] Kushmerick J 2009 Nature 462 994Google Scholar
[38] Richter S, Mentovich E, Elnathan R 2018 Adv. Mater. 30 1706941Google Scholar
[39] Liu R, Han Y, Sun F, Khatri G, Kwon J, Nickle C, Wang L, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar
[40] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar
[41] Zhou Q, Yang Y, Ni J, Li Z, Zhang Z 2010 Nano Res. 3 423Google Scholar
[42] Baghernejad M, Van Dyck C, Bergfield J, Levine D R, Gubicza A, Tovar J D, Calame M, Broekmann P, Hong W 2019 Chem. Eur. J. 25 15141Google Scholar
[43] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar
[44] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar
[45] Pan H, Tang L M, Chen K Q 2022 Phys. Rev. B 105 064401Google Scholar
-
图 9 (a)—(c) A1, B1, A2, B2, A3和B3分别在±1.8 V范围内的自旋电流-电压特性; (d)在同一自旋状态下, A2与B2和A3与B3随电压的变化的自旋电流之比
Fig. 9. (a)–(c) Spin-resolved current-voltage characteristics of A1, B1, A2, B2, A3, and B3 in the range of ±1.8 V, respectively; (d) the variation of spin-current ratios with voltages in the same spin state of A2 to B2 and A3 to B3.
图 10 (a) A1和(b) B1在0 V, ±0.8 V 和 ±1.6 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零
Fig. 10. Spin-transmission spectra of (a) A1 and (b) B1 at 0 V, ±0.8 V 和 ±1.6 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.
图 11 (a) A2和(b) B2在0 V, ±0.8 V 和 ±1.6 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零
Fig. 11. Spin-transmission spectra of (a) A2 and (b) B2 at 0 V, ±0.8 V 和 ±1.6 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.
图 12 (a) A3和(b) B3在0 V, ±0.4 V 和 ±1.2 V偏压下的自旋透射谱, 蓝线和红线分别代表自旋向上和自旋向下, 黑色实线之间的区域为偏压窗口, 费米能级在能量尺度上被设定为零
Fig. 12. Spin-transmission spectra of (a) A3 and (b) B3 at 0 V, ±0.4 V 和 ±1.2 V. The blue line and the red line represent up-spin and down-spin, respectively. The region between the black solid lines is the bias window. The Fermi level is set at zero in the energy scale.
-
[1] Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar
[2] Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D, van der Zant H S J 2014 Nat. Nanotechnol. 9 830Google Scholar
[3] Koley S, Chakrabarti S 2018 Chem. Eur. J. 24 5876Google Scholar
[4] Sharma P, Bernard L S, Bazigos A, Magrez A, Ionescu A M 2015 ACS Nano 9 620Google Scholar
[5] Kumar S, Wang Z, Davila N, Kumari N, Norris K J, Huang X, Strachan J P, Vine D, Kilcoyne A L D, Nishi Y, Williams R S 2017 Nat. Commun. 8 658Google Scholar
[6] Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D, Wang C K 2019 Physica E 106 270Google Scholar
[7] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar
[8] Komeda J, Takada K, Maeda H, Fukui N, Tsuji T, Nishihara H 2022 Chem. Eur. J. 28 e202201316Google Scholar
[9] Zhao J, Zeng H, Wang D, Yao G 2020 Appl. Surf. Sci. 519 146203Google Scholar
[10] Petersen M Å, Rasmussen B, Andersen N N, Sauer S P A, Nielsen M B, Beeren S R, Pittelkow M 2017 Chem. Eur. J. 23 17010Google Scholar
[11] Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar
[12] Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar
[13] Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar
[14] Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar
[15] Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar
[16] Fan Z Q, Sun W Y, Zhang Z H, Deng X Q, Tang G P, Xie H Q 2017 Carbon 122 687Google Scholar
[17] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar
[18] Yang Y, Gantenbein M, Alqorashi A, Wei J, Sangtarash S, Hu D, Sadeghi H, Zhang R, Pi J, Chen L, Huang X, Li R, Liu J, Shi J, Hong W, Lambert C J, Bryce M R 2018 J. Phys. Chem. C 122 14965Google Scholar
[19] Liu X, Sangtarash S, Reber D, Zhang D, Sadeghi H, Shi J, Xiao Z Y, Hong W, Lambert C J, Liu S X 2017 Angew. Chem. 129 179Google Scholar
[20] Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar
[21] Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar
[22] Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar
[23] Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J, Duan L L, Huo Y, Shao X, Hong W, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar
[24] Yang G, Sangtarash S, Liu Z, Li X, Sadeghi H, Tan Z, Li R, Zheng J, Dong X, Liu J, Yang Y, Shi J, Xiao Z, Zhang G, Lambert C, Hong W, Zhang D 2017 Chem. Sci. 8 7505Google Scholar
[25] Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler D R, Miyazaki T, Xiang L, Asai Y, Zhou G, Tao N 2019 Nat. Mater. 18 357Google Scholar
[26] Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar
[27] Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W 2019 Nat. Mater. 18 364Google Scholar
[28] Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen Z B, Shi J, Xiao Z, Hong W, Tian Z Q 2018 Chem. Sci. 9 5033Google Scholar
[29] Liu J, Zhao X, Al-Galiby Q, Huang X, Zheng J, Li R, Huang C, Yang Y, Shi J, Manrique D Z, Lambert C J, Bryce M R, Hong W 2017 Angew. Chem. 129 13241Google Scholar
[30] Cai S, Deng W, Huang F, Chen L, Tang C, He W, Long S, Li R, Tan Z, Liu J, Shi J, Liu Z, Xiao Z, Zhang D, Hong W 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar
[31] Ozawa H, Baghernejad M, Al-Owaedi O A, Kaliginedi V, Nagashima T, Ferrer J, Wandlowski T, García-Suárez V M, Broekmann P, Lambert C J, Haga M A 2016 Chem. Eur. J. 22 12732Google Scholar
[32] Greenwald J E, Cameron J, Findlay N J, Fu T, Gunasekaran S, Skabara P J, Venkataraman L 2021 Nat. Nanotechnol. 16 313Google Scholar
[33] Trasobares J, Vuillaume D, Théron D, Clément N 2016 Nat. Commun. 7 12850Google Scholar
[34] Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Phys. E 128 114542Google Scholar
[35] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X, Chen K Q 2021 Appl. Phys. Lett. 119 063503Google Scholar
[36] Fan Z Q, Xie F, Jiang X W, Wei Z, Li S S 2016 Carbon 110 200Google Scholar
[37] Kushmerick J 2009 Nature 462 994Google Scholar
[38] Richter S, Mentovich E, Elnathan R 2018 Adv. Mater. 30 1706941Google Scholar
[39] Liu R, Han Y, Sun F, Khatri G, Kwon J, Nickle C, Wang L, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar
[40] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar
[41] Zhou Q, Yang Y, Ni J, Li Z, Zhang Z 2010 Nano Res. 3 423Google Scholar
[42] Baghernejad M, Van Dyck C, Bergfield J, Levine D R, Gubicza A, Tovar J D, Calame M, Broekmann P, Hong W 2019 Chem. Eur. J. 25 15141Google Scholar
[43] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar
[44] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901Google Scholar
[45] Pan H, Tang L M, Chen K Q 2022 Phys. Rev. B 105 064401Google Scholar
计量
- 文章访问数: 3503
- PDF下载量: 50
- 被引次数: 0