搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻

张明媚 郭亚涛 付旭日 李梦蕾 任宝藏 郑军 袁瑞玚

引用本文:
Citation:

铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻

张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚

Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode

Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang
PDF
HTML
导出引用
  • 采用三带紧束缚模型和非平衡格林函数的方法理论研究了铁磁电极单层之字形二硫化钼纳米带量子结构中的自旋电子输运性质. 结果发现, 由于铁磁电极的磁交换作用与散射区域电场共同影响, 可获得能量依赖的100%自旋极化, 得到纯的自旋流. 这表明在该结构通过调控入射能可以实现自旋电子开关效应. 此外, 还发现当电导完全自旋极化时, 磁交换场强度可以对巨磁阻效应进行有效的调控. 该工作可为基于单层二硫化钼纳米带设计巨磁阻器件以及自旋过滤器提供理论参考.
    Spintronics is a new type of electronics based on electron spin rather than charge as the information carrier, which can be stored and calculated by regulating and manipulating the spin. The discovery and application of the giant magnetoresistance effect opens the door to the application of electron spin properties. Realizing on-demand control of spin degree of freedom for spin-based devices is essential. The two-dimensional novel material, monolayer transition metal dichalcogenide (TMD) (MoS2 is a typical example from the family of TMD materials), has become an excellent platform for studying spintronics due to its novel physical properties, such as direct band gap and strong spin-orbit coupling. Obtaining high spin polarization and achieving controllability of degrees of freedom are fundamental problems in spintronics. In this paper, we construct the monolayer zigzag MoS2 nanoribbon quantum structure of electrically controlled ferromagnetic electrode to solve this problem. Based on the non-equilibrium Green’s function method, the regulation of the magnetic exchange field and electrostatic barrier on the spin transport in parallel configuration and anti-parallel configuration are studied. It is found that in the parallel structure, spin transport is obviously related to the magnetic exchange field, and 100% spin filtering can occur near the Fermi energy level to obtain pure spin current. When an additional electric field is applied to the middle region, the spin filtering effect is more significant. Therefore, the spin switching effect can be achieved by regulating the incident energy. In addition, it is also found that within a specific energy range, electrons in the parallel configuration are excited to participate in transport, while electrons in the anti-parallel structure are significantly inhibited. Consequently, a noticeable giant magnetoresistance effect can be obtained in this quantum structure. Moreover, it can be seen that the magnetic exchange field strength can effectively modulate the giant magnetoresistance effect. These results provide valuable theoretical references for the development of giant magnetoresistance devices and spin filters based on monolayer zigzag MoS2 nanoribbons.
      通信作者: 袁瑞玚, yuanry@cnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804236, 11604226, 12174038)、北京市教育委员会科技发展计划(批准号: KM201910028017, CIT-TCD201904080)和辽宁省“兴辽英才”青年拔尖人才项目(批准号: XLYC2007141)资助的课题.
      Corresponding author: Yuan Rui-Yang, yuanry@cnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804236, 11604226, 12174038), the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (Grant Nos. KM201910028017, CIT-TCD201904080), and the Revitalization Talents Program of Liaoning Province, China (Grant No. XLYC2007141).
    [1]

    Mak K F, Lee C, Hone J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [2]

    Lu H Z, Yao W, Xiao D, Shen S Q 2013 Phys. Rev. Lett. 110 016806Google Scholar

    [3]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [4]

    Zhu Z Y, Cheng Y C, Schwingenschlögl U 2011 Phys. Rev. B 84 153402Google Scholar

    [5]

    Radisavlj eVic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [6]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [7]

    Rahimi F, Phirouznia A 2022 Sci. Rep. 12 7800Google Scholar

    [8]

    Liu G B, Shan W Y, Yao Y, Yao W, Xiao D 2013 Phys. Rev. B 88 085433Google Scholar

    [9]

    Baibich M N, Broto J M, Fert A, Nguyen V D F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [10]

    Thompson S M 2008 Appl. Phys. 41 093001Google Scholar

    [11]

    Prinz G A 1998 Science 282 1660Google Scholar

    [12]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828Google Scholar

    [13]

    Zhang X L, Gong P W, Liu F Q, Yao K L, Wu J, Zhu S C 2022 Front. Phys 17 53510Google Scholar

    [14]

    Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280Google Scholar

    [15]

    Botello-Méndez A R, López-Urías F, Terrones M, Terrones H 2009 Nanotechnology 20 325703Google Scholar

    [16]

    Tong X, Ashalley E, Lin F, Li H, Wang Z M 2015 Nano-Micro. lett. 7 203Google Scholar

    [17]

    Backman J, Lee Y, Luisier M 2022 Solid State Electron. 35 8092

    [18]

    Song J F, Qi Y B, Xiao Z Y, Wang K, Li D W, Kim S H, Kingon A I, Rappe A M, Hong X 2019 NPJ 2D Mater. Appl. 6 77Google Scholar

    [19]

    Lembke D, Kis A 2013 ACS Nano 7 3730Google Scholar

    [20]

    张理勇, 方粮, 彭向阳 2016 物理学报 65 127101Google Scholar

    Zhang L Y, Fang L, Peng X Y 2016 Acta Phys. Sin. 65 127101Google Scholar

    [21]

    董海明 2013 物理学报 62 206101Google Scholar

    Dong H M 2013 Acta Phys. Sin. 62 206101Google Scholar

    [22]

    Rachel S, Ezawa M 2014 Phys. Rev. B 89 195303Google Scholar

    [23]

    Li H, Shao J M, Yao D X, Yang G W 2014 ACS Appl. Mater. Interfaces 6 1759Google Scholar

    [24]

    Zheng J, Xiang Y, Li C L, Yuan R Y, Chi F, Guo Y 2020 Phys. Rev. Applied 14 034027Google Scholar

    [25]

    Lu W T, Sun Q F, Li Y F, Tian H Y 2021 Phys. Rev. B 104 195419Google Scholar

    [26]

    You S, Park D, Kim H, Kim N 2022 Curr. Appl. Phys. 37 52Google Scholar

    [27]

    Li F, Zhang Q T 2022 Micro. Nanostruct. 163 107129Google Scholar

    [28]

    Li Y, Jiang W Q, Ding G Y, Peng Y Z, Wen Z C, Wang G Q, Bai R, Qian Z H, Xiao X B, Zhou G H 2019 J. Appl. Phys. 125 244304Google Scholar

    [29]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nature Nanotech. 10 491Google Scholar

    [30]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nature Phys. 11 141Google Scholar

  • 图 1  铁磁电极单层二硫化钼纳米带量子结构模型示意图. 桔色矩形区域表示元胞; 中间区域长度, 即元胞个数为$ {N}_{x} $; 纳米带宽度, 既Mo原子层数为$ {N}_{y} $

    Fig. 1.  Quantum structure model of monolayer MoS2 nanoribbons with ferromagnetic (FM) electrodes. The cell is represented by the orange rectangle. The length of the middle region, i.e., the number of cells is $ {N}_{x} $; nanoribbon width, i.e., Mo atomic layer number is $ {N}_{y} $.

    图 2  磁交换场强度(M)不变, 中间区域施加不同强度电场(U)时, 自旋电导随入射能量变化的曲线图 (a)−(d) $ M=0.01 $ eV; (e)−(h) $ M=0.1 $ eV, (h)中插图为上自旋电导随不同入射能、中间区域电势能变化的等高线图, (g)中插图为上自旋电子的能带图. 其他参数为中间区域长度${N_x} = 14$, 纳米带宽度${N_y} = 8$

    Fig. 2.  Spin conductance as a function of incident energy with several electric fields applied in the middle region for the magnetic exchange field of (a)−(d) $ M=0.01\;\text{eV} $ and (e)−(h) $ M=0.1\;\text{eV} $. The insert in (h) shows the contour diagram of spin-up conductance with different incident energies and potential energies in the middle region. The insert in (g) shows the energy-band diagram of spin-up electrons. The other parameters are ${N_x} = 14$, ${N_y} = 8$.

    图 3  中间区域电势能$U = 0.2$ eV, 源漏电极磁化强度变化时, 自旋电导随入射能变化的曲线图, 中间区域长度${N_x} = 14$, 纳米带宽度${N_y} = 8$

    Fig. 3.  Spin conductance as a function of the incident energy with different magnetic exchange fields. The other parameters are $U = 0.2$ eV, ${N_x} = 14$ and ${N_y} = 8$.

    图 4   (a)−(d) 不同磁化强度下, 磁化方向平行和反平行时电导随入射能的变化曲线图; (e)磁阻率随入射能变化的曲线图; (f)磁阻率随磁交换场强度变化的趋势图, 入射能${E_{{\text{in}}}} = - 0.125$eV. 其他参数为中间区域长度${N_x} = 14$, 纳米带宽度${N_y} = 8$, 中间区域电势能$U = 0.1$eV

    Fig. 4.  (a)−(d) Spin conductance as a function of the incident energy when the magnetization directions are parallel and anti-parallel with different magnetization intensities; (e) the magnetoresistance as a function of the incident energy; (f) the magnetoresistance as a function of the magnetic exchange field intensity, where the incident energy is ${E_{{\text{in}}}} = - 0.125$eV. The other parameters are ${N_x} = 14$, ${N_y} = 8$, and $U = 0.1$eV.

    图 5  (a)磁阻率随入射能变化的曲线图; (b)磁阻率随电场强度变化的趋势图, 入射能${E_{{\text{in}}}} = - 0.125$ eV. 其他参数为中间区域长度${N_x} = 14$, 纳米带宽度${N_y} = 8$, 磁交换场强度$M = 0.1$ eV

    Fig. 5.  (a) Magnetoresistance as a function of the incident energy; (b) the magnetoresistance as a function of the electric field intensity, where the incident energy is ${E_{{\text{in}}}} = - 0.125$ eV. The other parameters are ${N_x} = 14$, ${N_y} = 8$, and $M = 0.1$eV.

    表 1  参数$ {\varepsilon _1}, {\varepsilon _2}, {t_0}, {t_1}, {t_2}, {t_{11}}, {t_{12}}, {t_{22}}, {\lambda _{{\text{so}}}} $取值 (单位: eV)[8]

    Table 1.  Values of parameter $ {\varepsilon _1}, {\varepsilon _2}, {t_0}, {t_1}, {t_2}, {t_{11}}, {t_{12}}, {t_{22}}, {\lambda _{{\text{so}}}} $ (unit: eV)[8].

    $ {\varepsilon }_{1} $$ {\varepsilon }_{2} $$ {t}_{0} $$ {t}_{1} $$ {t}_{2} $$ {t}_{11} $$ {t}_{12} $$ {t}_{22} $$ {\lambda _{{\text{so}}}} $
    1.0462.104–0.1840.4010.5070.2180.3380.0570.073
    下载: 导出CSV
  • [1]

    Mak K F, Lee C, Hone J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [2]

    Lu H Z, Yao W, Xiao D, Shen S Q 2013 Phys. Rev. Lett. 110 016806Google Scholar

    [3]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [4]

    Zhu Z Y, Cheng Y C, Schwingenschlögl U 2011 Phys. Rev. B 84 153402Google Scholar

    [5]

    Radisavlj eVic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [6]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [7]

    Rahimi F, Phirouznia A 2022 Sci. Rep. 12 7800Google Scholar

    [8]

    Liu G B, Shan W Y, Yao Y, Yao W, Xiao D 2013 Phys. Rev. B 88 085433Google Scholar

    [9]

    Baibich M N, Broto J M, Fert A, Nguyen V D F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [10]

    Thompson S M 2008 Appl. Phys. 41 093001Google Scholar

    [11]

    Prinz G A 1998 Science 282 1660Google Scholar

    [12]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828Google Scholar

    [13]

    Zhang X L, Gong P W, Liu F Q, Yao K L, Wu J, Zhu S C 2022 Front. Phys 17 53510Google Scholar

    [14]

    Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280Google Scholar

    [15]

    Botello-Méndez A R, López-Urías F, Terrones M, Terrones H 2009 Nanotechnology 20 325703Google Scholar

    [16]

    Tong X, Ashalley E, Lin F, Li H, Wang Z M 2015 Nano-Micro. lett. 7 203Google Scholar

    [17]

    Backman J, Lee Y, Luisier M 2022 Solid State Electron. 35 8092

    [18]

    Song J F, Qi Y B, Xiao Z Y, Wang K, Li D W, Kim S H, Kingon A I, Rappe A M, Hong X 2019 NPJ 2D Mater. Appl. 6 77Google Scholar

    [19]

    Lembke D, Kis A 2013 ACS Nano 7 3730Google Scholar

    [20]

    张理勇, 方粮, 彭向阳 2016 物理学报 65 127101Google Scholar

    Zhang L Y, Fang L, Peng X Y 2016 Acta Phys. Sin. 65 127101Google Scholar

    [21]

    董海明 2013 物理学报 62 206101Google Scholar

    Dong H M 2013 Acta Phys. Sin. 62 206101Google Scholar

    [22]

    Rachel S, Ezawa M 2014 Phys. Rev. B 89 195303Google Scholar

    [23]

    Li H, Shao J M, Yao D X, Yang G W 2014 ACS Appl. Mater. Interfaces 6 1759Google Scholar

    [24]

    Zheng J, Xiang Y, Li C L, Yuan R Y, Chi F, Guo Y 2020 Phys. Rev. Applied 14 034027Google Scholar

    [25]

    Lu W T, Sun Q F, Li Y F, Tian H Y 2021 Phys. Rev. B 104 195419Google Scholar

    [26]

    You S, Park D, Kim H, Kim N 2022 Curr. Appl. Phys. 37 52Google Scholar

    [27]

    Li F, Zhang Q T 2022 Micro. Nanostruct. 163 107129Google Scholar

    [28]

    Li Y, Jiang W Q, Ding G Y, Peng Y Z, Wen Z C, Wang G Q, Bai R, Qian Z H, Xiao X B, Zhou G H 2019 J. Appl. Phys. 125 244304Google Scholar

    [29]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nature Nanotech. 10 491Google Scholar

    [30]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nature Phys. 11 141Google Scholar

  • [1] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究. 物理学报, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [2] 田颖异, 王拴虎, 罗殿柄, 魏向洋, 金克新. 溶液旋涂法制备BixY3–xFe5O12薄膜的自旋输运特性. 物理学报, 2023, 72(1): 017201. doi: 10.7498/aps.72.20221183
    [3] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [5] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [6] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响. 物理学报, 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [7] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流. 物理学报, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [8] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [9] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [10] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [11] 朱朕, 李春先, 张振华. 功能化扶手椅型石墨烯纳米带异质结的磁器件特性. 物理学报, 2016, 65(11): 118501. doi: 10.7498/aps.65.118501
    [12] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [13] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运. 物理学报, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [14] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [15] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制. 物理学报, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [16] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下二氧化锆的分子结构及其特性. 物理学报, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [17] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [18] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用. 物理学报, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [19] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [20] 王如志, 袁瑞玚, 宋雪梅, 魏金生, 严辉. 半导体超晶格系统中的磁电调控电子自旋输运研究. 物理学报, 2009, 58(5): 3437-3442. doi: 10.7498/aps.58.3437
计量
  • 文章访问数:  1137
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-05-04
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回