搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场方向对一维断裂纳米通道连接处水桥结构的影响

孟现文

引用本文:
Citation:

电场方向对一维断裂纳米通道连接处水桥结构的影响

孟现文

Structural influence of electric field direction on water bridges in one-dimensional disjoint nanochannels

Meng Xian-Wen
PDF
HTML
导出引用
  • 电场影响纳米通道内的水分子的电偶极矩取向, 进而影响纳米通道内的水分子的传输. 为了有效发掘水分子在纳米通道内的传输特点, 必须研究更复杂的纳米通道结构. 最新一种构造复杂纳米通道的方式是构造断裂纳米通道. 在研究断裂纳米通道内的水分子的动力学特点时, 通常是在零电场或单一电场方向下进行的, 电场方向对断裂纳米通道内的水分子的影响机理尚不明确, 这制约了部分场控分子器件的设计. 为了探究该问题, 本文采用分子动力学模拟方法, 系统研究了电场方向从0°变化到180°的过程中, 电场方向对完整纳米通道以及断裂长度分别为0.2和0.4 nm的断裂纳米通道内的水分子的占据数、传输、水桥、电偶极矩偏向等性质的影响. 结果表明, 在1 V/nm的电场强度作用下, 这三种纳米通道内的水分子的占据数、传输等差别主要集中在电场方向与管轴夹角为90°时, 此时完整纳米通道内能形成稳定的水链, 断裂长度为0.2 nm的纳米通道的连接处能形成不稳定的水桥, 而断裂长度为0.4 nm的纳米通道的连接处不能形成水桥. 此外, 模拟发现当电场极化方向与管轴夹角为90°时, 增大电场的强度, 断裂纳米通道连接处的水桥更容易断裂.
    The orientation of water molecules within nanochannels is pivotal in influencing water transport, particularly under the influence of electric fields. This study delves into the effects of electric field direction on water transport through disjoint nanochannels, a structure which is of emerging significance. Molecular dynamics simulations are conducted to study the properties of water in complete nanochannel and disjoint nanochannels with gap sizes of 0.2 nm and 0.4 nm, respectively, such as occupancy, transport, water bridge formation, and dipole orientation, by systematically varying the electric field direction from 0 to 180 degrees. The simulation results disclose that the electric field direction has little influence on water flow through complete nanochannels. However, as the size of the nanogap expands, the declining trend of water transfer rate through disjoint nanochannels becomes more distinctive when the electric field direction is shifted from 0 to 90 degrees under an electric field with a strength of 1 V/nm. Notably, results also reveal distinct behaviors at 90 degrees under an electric field with a strength of 1 V/nm, where the stable water chains, unstable water bridges, and no water bridges are observed in complete nanochannels, disjoint nanochannels with 0.2 nm gap, and 0.4 nm gap, respectively. Moreover, simulations indicate that increasing the electric field strength in a polarization direction perpendicular to the tube axis facilitates water bridge breakdown in disjoint nanochannels. This research sheds light on the intricate interplay between electric field direction and water transport dynamics in disjoint nanochannels, presenting valuable insights into various applications.
      通信作者: 孟现文, xwmeng@cumt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11605285)和中国矿业大学重点学科经费(批准号: 2022WLXK17)资助的课题.
      Corresponding author: Meng Xian-Wen, xwmeng@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11605285) and the Key Academic Discipline Project of China University of Mining and Technology, China (Grant No. 2022WLXK17).
    [1]

    Fajardo-Diaz J L, Morelos-Gomez A, Cruz-Silva R, Ishii K, Yasuike T, Kawakatsu T, Yamanaka A, Tejima S, Izu K, Saito S, Maeda J, Takeuchi K, Endo M 2022 Chem. Eng. J. 448 137359Google Scholar

    [2]

    Kang X, Meng X W 2022 Chem. Phys. 559 111544Google Scholar

    [3]

    Corry B 2008 J. Phys. Chem. B 112 1427Google Scholar

    [4]

    Zhang R N, Liu Y N, He M R, Su Y L, Zhao X T, Elimelech M, Jiang Z Y 2016 Chem. Soc. Rev. 45 5888Google Scholar

    [5]

    Werber J R, Osuji C O, Elimelech M 2016 Nat. Rev. Mater. 1 16018Google Scholar

    [6]

    Abramyan A K, Bessonow N M, Mirantsev L V, Chevrychkina A A 2018 Eur. Phys. J. B 91 48Google Scholar

    [7]

    Park H G, Jung Y 2014 Chem. Soc. Rev. 43 565Google Scholar

    [8]

    孙志伟, 何燕, 唐元政 2021 物理学报 70 060201Google Scholar

    Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201Google Scholar

    [9]

    Qiu T, Meng X W, Huang J P 2015 J. Phys. Chem. B 119 1496Google Scholar

    [10]

    Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034Google Scholar

    [11]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [12]

    Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L 2016 Nature 537 210Google Scholar

    [13]

    Farrokhbin M, Lohrasebi A 2023 Eur. Phys. J. E 46 93Google Scholar

    [14]

    He Y C, Sun G, Koga K, Xu L M 2014 Sci. Rep. 4 6596Google Scholar

    [15]

    Liu W C, Jing D W 2023 J. Phys. Chem. Lett. 14 5740Google Scholar

    [16]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275Google Scholar

    [17]

    Zhang Q L, Yang R Y, Jiang W Z, Huang Z Q 2016 Nanoscale 8 1886Google Scholar

    [18]

    Zhang Q L, Yang R Y 2016 Chem. Phys. Lett. 644 201Google Scholar

    [19]

    Zhu J Z, Lan Y Q, Du H J, Zhang Y H, Su J G 2016 Phys. Chem. Chem. Phys. 18 17991Google Scholar

    [20]

    Shafiei M, Von Domaros M, Bratko D, Luzar A 2019 J. Chem. Phys. 150 074505Google Scholar

    [21]

    Vanzo D, Luzar A, Bratko D 2021 Phys. Chem. Chem. Phys. 23 27005Google Scholar

    [22]

    张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁 2018 物理学报 67 056102Google Scholar

    Zhang Z Q, Li C, Liu H L, Ge D H, Cheng G G, Ding J N 2018 Acta Phys. Sin. 67 056102Google Scholar

    [23]

    章其林, 王瑞丰, 周同, 王允杰, 刘琪 2023 物理学报 72 084207Google Scholar

    Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207Google Scholar

    [24]

    de Freitas D N, Mendonca B H S, Kohler M H, Barbosa M C, Matos M J S, Batista R J C, de Oliveira A B 2020 Chem. Phys. 537 110849Google Scholar

    [25]

    Sahimi M, Ebrahimi F 2019 Phys. Rev. Lett. 122 214506Google Scholar

    [26]

    Meng X W, Shen L 2020 Chem. Phys. Lett. 739 137029Google Scholar

    [27]

    Ebrahimi F, Maktabdaran G R, Sahimi M 2020 J. Phys. Chem. B 124 8340Google Scholar

    [28]

    Meng X W, Li Y, Shen L, Yang X Q 2020 EPL 131 20003Google Scholar

    [29]

    Meng X W, Li Y 2022 Physica E 135 114980Google Scholar

    [30]

    Wang F, Zhang X K, Li S, Su J Y 2022 J. Mol. Liq. 362 119719Google Scholar

    [31]

    Hess B, Kutzner C, Van De Spoel D, Lindahl E 2008 J. Chem. Theory. Comp. 4 435Google Scholar

    [32]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [33]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [35]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166Google Scholar

    [36]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P 2007 P. Natl. Acad. Sci. USA 104 3687Google Scholar

    [37]

    Darden T A, York D M, Pedersen L G 1993 J. Chem. Phys. 98 10089Google Scholar

    [38]

    Zhao Y Z, Su J Y 2018 J. Phys. Chem. C 122 22178Google Scholar

    [39]

    Fang C, Huang D C, Su J Y 2020 J. Phys. Chem. Lett. 11 940Google Scholar

    [40]

    Xie Z, Li Z, Li J Y, Kou J L, Yao J, Fan J T 2021 J. Chem. Phys. 154 024705Google Scholar

    [41]

    Xie Z, Hao S Q, Wang W Y, Kou J L, Fan J T 2022 J. Mol. Liq. 363 119852Google Scholar

  • 图 1  模拟框架图, 包括2片石墨烯, 1个断裂纳米通道(断裂长度标记为L). 水分子用红白球表示, 石墨烯及断裂纳米通道用青色表示, 电场方向与+z方向的夹角定义为θ

    Fig. 1.  Configuration of the simulation system. It contains two graphene sheets, a disjoint nanochannel with a nanogap (marked as L). Water molecules are shown in white and red. Carbon atoms are represented in cyan. The angle between the electric field direction and the +z is defined as θ

    图 2  水分子通过完整纳米通道及断裂纳通道的单位时间平均流量($ V_{\mathrm{f}} $)随θ的变化

    Fig. 2.  Average water transfer rate, $ V_{\mathrm{f}} $, through complete nanochannels and disjoint nanochannels as a function of θ, respectively.

    图 3  完整纳米通道及断裂纳米通道内的水分子平均占据数(N )随θ的变化

    Fig. 3.  Average water occupancy, N, in complete nanochannels and disjoint nanochannels as a function of θ, respectively.

    图 4  (a)当θ = 0°时, 纳米通道内不同位置水分子数的平均分布概率; (b)当θ = 90°时, 纳米通道内不同位置水分子数的平均分布概率

    Fig. 4.  (a) Average water distribution probability in nanochannels as a function of the positions when θ is 0°; (b) average water distribution probability in nanochannels as a function of the positions when θ is 90°.

    图 5  完整纳米通道及断裂纳米通道内的水分子平均运动速度(v)随θ的变化

    Fig. 5.  Average water velocity, v, in complete nanochannels and disjoint nanochannels as a function of θ, respectively.

    图 6  (a), (b) θ = 0°时, 完整纳米通道及断裂纳米通道内的水分子的结构图; (c), (d) θ = 90°时, 完整纳米通道及断裂纳米通道内的水分子的结构图

    Fig. 6.  (a), (b) Structure of water molecules in complete nanochannels and disjoint nanochannels when θ = 0°, respectively; (c), (d) structure of water molecules in complete nanochannels and disjoint nanochannels when θ = 90°, respectively

    图 7  完整纳米通道及断裂纳米通道内的水分子平均偶极偏向角(ϕ)随 θ的变化

    Fig. 7.  Average angle between water dipole and +z direction, ϕ, in complete nanochannels and disjoint nanochannels as a function of θ, respectively.

    图 8  (a)—(c)电场强度E = 1, 2 V/nm时, 完整纳米通道(L = 0 nm)及0.2, 0.4 nm的断裂纳米通道内的水分子平均占据数(N)随θ的变化

    Fig. 8.  (a)—(c) Average water occupancy, N, in complete nanochannels and disjoint nanochannels under E = 1, 2 V/nm as a function of θ, respectively.

  • [1]

    Fajardo-Diaz J L, Morelos-Gomez A, Cruz-Silva R, Ishii K, Yasuike T, Kawakatsu T, Yamanaka A, Tejima S, Izu K, Saito S, Maeda J, Takeuchi K, Endo M 2022 Chem. Eng. J. 448 137359Google Scholar

    [2]

    Kang X, Meng X W 2022 Chem. Phys. 559 111544Google Scholar

    [3]

    Corry B 2008 J. Phys. Chem. B 112 1427Google Scholar

    [4]

    Zhang R N, Liu Y N, He M R, Su Y L, Zhao X T, Elimelech M, Jiang Z Y 2016 Chem. Soc. Rev. 45 5888Google Scholar

    [5]

    Werber J R, Osuji C O, Elimelech M 2016 Nat. Rev. Mater. 1 16018Google Scholar

    [6]

    Abramyan A K, Bessonow N M, Mirantsev L V, Chevrychkina A A 2018 Eur. Phys. J. B 91 48Google Scholar

    [7]

    Park H G, Jung Y 2014 Chem. Soc. Rev. 43 565Google Scholar

    [8]

    孙志伟, 何燕, 唐元政 2021 物理学报 70 060201Google Scholar

    Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201Google Scholar

    [9]

    Qiu T, Meng X W, Huang J P 2015 J. Phys. Chem. B 119 1496Google Scholar

    [10]

    Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034Google Scholar

    [11]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [12]

    Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L 2016 Nature 537 210Google Scholar

    [13]

    Farrokhbin M, Lohrasebi A 2023 Eur. Phys. J. E 46 93Google Scholar

    [14]

    He Y C, Sun G, Koga K, Xu L M 2014 Sci. Rep. 4 6596Google Scholar

    [15]

    Liu W C, Jing D W 2023 J. Phys. Chem. Lett. 14 5740Google Scholar

    [16]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275Google Scholar

    [17]

    Zhang Q L, Yang R Y, Jiang W Z, Huang Z Q 2016 Nanoscale 8 1886Google Scholar

    [18]

    Zhang Q L, Yang R Y 2016 Chem. Phys. Lett. 644 201Google Scholar

    [19]

    Zhu J Z, Lan Y Q, Du H J, Zhang Y H, Su J G 2016 Phys. Chem. Chem. Phys. 18 17991Google Scholar

    [20]

    Shafiei M, Von Domaros M, Bratko D, Luzar A 2019 J. Chem. Phys. 150 074505Google Scholar

    [21]

    Vanzo D, Luzar A, Bratko D 2021 Phys. Chem. Chem. Phys. 23 27005Google Scholar

    [22]

    张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁 2018 物理学报 67 056102Google Scholar

    Zhang Z Q, Li C, Liu H L, Ge D H, Cheng G G, Ding J N 2018 Acta Phys. Sin. 67 056102Google Scholar

    [23]

    章其林, 王瑞丰, 周同, 王允杰, 刘琪 2023 物理学报 72 084207Google Scholar

    Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207Google Scholar

    [24]

    de Freitas D N, Mendonca B H S, Kohler M H, Barbosa M C, Matos M J S, Batista R J C, de Oliveira A B 2020 Chem. Phys. 537 110849Google Scholar

    [25]

    Sahimi M, Ebrahimi F 2019 Phys. Rev. Lett. 122 214506Google Scholar

    [26]

    Meng X W, Shen L 2020 Chem. Phys. Lett. 739 137029Google Scholar

    [27]

    Ebrahimi F, Maktabdaran G R, Sahimi M 2020 J. Phys. Chem. B 124 8340Google Scholar

    [28]

    Meng X W, Li Y, Shen L, Yang X Q 2020 EPL 131 20003Google Scholar

    [29]

    Meng X W, Li Y 2022 Physica E 135 114980Google Scholar

    [30]

    Wang F, Zhang X K, Li S, Su J Y 2022 J. Mol. Liq. 362 119719Google Scholar

    [31]

    Hess B, Kutzner C, Van De Spoel D, Lindahl E 2008 J. Chem. Theory. Comp. 4 435Google Scholar

    [32]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [33]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [35]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166Google Scholar

    [36]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P 2007 P. Natl. Acad. Sci. USA 104 3687Google Scholar

    [37]

    Darden T A, York D M, Pedersen L G 1993 J. Chem. Phys. 98 10089Google Scholar

    [38]

    Zhao Y Z, Su J Y 2018 J. Phys. Chem. C 122 22178Google Scholar

    [39]

    Fang C, Huang D C, Su J Y 2020 J. Phys. Chem. Lett. 11 940Google Scholar

    [40]

    Xie Z, Li Z, Li J Y, Kou J L, Yao J, Fan J T 2021 J. Chem. Phys. 154 024705Google Scholar

    [41]

    Xie Z, Hao S Q, Wang W Y, Kou J L, Fan J T 2022 J. Mol. Liq. 363 119852Google Scholar

  • [1] 李小雨, 彭兰沁, 赵涵, 幸运, 邓炎滔, 于迎辉. Ag2Sb合金单层上多层酞菁氧钒分子的组装. 物理学报, 2024, 73(11): 110702. doi: 10.7498/aps.73.20232004
    [2] 张森, 娄钦. 电场作用下锥翅表面强化池沸腾换热的介观数值方法. 物理学报, 2024, 73(2): 026401. doi: 10.7498/aps.73.20231141
    [3] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻. 物理学报, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [5] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [6] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [7] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究. 物理学报, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [8] 尹跃洪, 陈宏善, 宋燕. 电场诱导(MgO)12储氢的从头计算研究. 物理学报, 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [9] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下二氧化锆的分子结构及其特性. 物理学报, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [10] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制. 物理学报, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [11] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下2,2,5,5-四氯联苯的分子结构与电子光谱. 物理学报, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [12] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [13] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [14] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性. 物理学报, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [15] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [16] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [17] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [18] 阮 文, 罗文浪, 张 莉, 朱正和. 外电场作用下苯乙烯分子结构和电子光谱. 物理学报, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [19] 邓 闯, 翁渝民, 徐至中, 费 伦. 胶原蛋白分子中电场激发的孤子特性. 物理学报, 2005, 54(5): 2429-2434. doi: 10.7498/aps.54.2429
    [20] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究. 物理学报, 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
计量
  • 文章访问数:  836
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-02-22
  • 上网日期:  2024-03-13
  • 刊出日期:  2024-05-05

/

返回文章
返回