搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场作用下锥翅表面强化池沸腾换热的介观数值方法

张森 娄钦

引用本文:
Citation:

电场作用下锥翅表面强化池沸腾换热的介观数值方法

张森, 娄钦

A mesoscopic numerical method for enhanced pool boiling heat transfer on conical surfaces under action of electric field

Zhang Sen, Lou Qin
PDF
HTML
导出引用
  • 采用耦合电场模型的相变格子Boltzmann模型, 数值研究了电场作用下锥翅结构表面的饱和池沸腾换热. 为了定量分析电场对锥翅结构表面沸腾换热影响的机理, 首先在无电场作用下对比调查了平滑表面和锥翅表面的沸腾换热现象. 发现锥翅结构在核态沸腾阶段有更多的成核点, 沸腾换热性能增强, 临界热流密度(critical heat flux, CHF)提高. 而在过渡沸腾阶段以及膜态沸腾阶段, 由于锥翅结构增加了锥翅表面流体的流动阻力, 阻碍了气液交换, 换热性能低于平滑表面. 基于以上发现, 通过对锥翅表面池沸腾过程施加电场, 进一步强化了锥翅表面沸腾换热. 结果表明, 在起始核态沸腾阶段, 电场的存在稍微延后了气泡开始成核时间, 气泡尺寸减小, 沸腾轻微被抑制; 充分核态沸腾阶段, 由于电场力的作用以及电场与锥翅结构协同表现出的尖端效应, 阻止了加热表面干斑的扩散和蔓延, 促进沸腾换热; 过渡沸腾以及膜态沸腾阶段, 尖端效应更加明显, 逐渐增大的电场强度使沸腾在更高过热度下处于核态沸腾状态, 沸腾换热性能大幅度提高, 且CHF逐渐提高.
    The saturated pool boiling heat transfer on a conical structure surface under the action of an electric field is numerically investigated by using the lattice Boltzmann (LB) model coupled with an electric field model. A comparison study of boiling heat transfer phenomenon smooth surface and conical surface without the action of an electric field is first conducted in order to quantitatively analyze the mechanism of the electric field effect on boiling heat transfer on the conical structure surface. It is discovered that the conical structure has more active nucleation sites during the nucleate boiling regime, improving the boiling heat transfer efficiency and enhancing the critical heat flux (CHF). However, in the transition boiling stage and film boiling stage, the conical structure increases the flow resistance of the fluid on the fin surface, hindering heat transfer between the vapor and liquid and producing lower heat transfer performance than smooth surface. Based on the aforementioned findings, the boiling heat transmission on the conical structure surface is enhanced by applying an electric field. Numerical results indicate that the effect of the electric field on the boiling heat transfer performance on the conical structure surface is related to the boiling regime. In the earlier stage of the nucleation boiling regime, when an electric field is present, the onset time of bubble nucleation is slightly delayed, bubble size decreases a little, and boiling is slightly suppressed. However, the combination effect of electric field and conical structure, especially the tip effect, prevents the spread and diffusion of dry areas on the heating surface, thereby enhancing boiling heat transfer in the fully developed nucleate boiling stage. The tip effect grows more evidently in the transition boiling regime and film boiling regime, and increasing electric field intensity causes boiling to continue in the nucleate boiling regime at a higher superheat level. As a result, boiling heat transfer performance is greatly improved, and CHF steadily rises.
      通信作者: 娄钦, louqin560916@163.com
    • 基金项目: 国家自然科学基金(批准号: 51976128, 52376068)和上海市浦江计划(批准号: 22PJD047)资助的课题.
      Corresponding author: Lou Qin, louqin560916@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51976128, 52376068) and the Shanghai Pujiang Program, China (Grant No. 22PJD047).
    [1]

    Zaidi S 2015 Chem. Eng. Res. Des. 98 44Google Scholar

    [2]

    Massih A R, Persson S 1992 J. Nucl. Mater. 188 323Google Scholar

    [3]

    Mohammed H I, Giddings D, Walker G S 2019 Int. J. Heat Mass Transfer 130 710Google Scholar

    [4]

    Nikolayev V S, Chatain D, Garrabos Y, Beysens D 2006 Phys. Rev. Lett. 97 184503Google Scholar

    [5]

    Li W, Dai R K, Zeng M, Wang Q W 2020 Renew. Sust. Energ. Rev. 130 109926Google Scholar

    [6]

    Tian Z, Etedali S, Afrand M, Abdollahi A, Goodarzi M 2019 Powder Technol. 356 391Google Scholar

    [7]

    Wei J J, Honda H 2003 Int. J. Heat Mass Transfer 46 4059Google Scholar

    [8]

    Li Q, Zhao J H, Sun X Z, Liu B 2022 Appl. Therm. Eng. 215 118924Google Scholar

    [9]

    Kong X, Zhang Y H, Wei J J 2018 Exp. Therm. Fluid Sci. 91 9Google Scholar

    [10]

    Kim S H, Lee C G, Kang J Y, Moriyama K, Kim M H, Park H S 2015 Int. J. Heat Mass Transfer 91 1140Google Scholar

    [11]

    Elkholy A, Swift J, Kempers R 2023 Appl. Therm. Eng 219 119665Google Scholar

    [12]

    Clubb L 1916 UK Patent 100796 [1916-07-09

    [13]

    Dong W, Li R Y, Yu H L, Yan Y Y 2006 Exp. Therm. Fluid Sci. 30 579Google Scholar

    [14]

    Gao M, Cheng P, Quan X J 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [15]

    Hristov Y, Zhao D, Kenning D B R, Sefiane K, Karayiannis T G 2009 Heat Mass Transfer 45 999Google Scholar

    [16]

    Garivalis A I, Manfredini G, Saccone G, Di Marco P, Kossolapov A, Bucci M 2021 NPJ Microgravity 7(1) 37Google Scholar

    [17]

    Quan X J, Gao M, Cheng P, Li J S 2015 Int. J. Heat Mass Transfer 85 595Google Scholar

    [18]

    Liu B, Garivalis A I, Cao Z, Zhang Y, Wei J 2022 Int. J. Heat Mass Transfer 183 122154Google Scholar

    [19]

    Liu X, Chai Z H, Shi B C 2019 Phys. Fluids 31 092103Google Scholar

    [20]

    Liu X, Chai Z H, Shi B C 2021 Commun. Comput. Phys. 30 1346Google Scholar

    [21]

    Feng Y, Li H, Guo K, Lei X, Zhao J 2019 Int. J. Heat Mass Transfer 135 885Google Scholar

    [22]

    Li W X, Li Q, Chang H Z, Yu Y, Tang S 2022 Phys. Fluids 34 123327Google Scholar

    [23]

    Lou Q, Wang H Y, Li L 2023 Phys. Fluids 35 123327Google Scholar

    [24]

    Ezzatneshan E, Salehi A, Vaseghnia H 2023 Int. J. Therm. Sci 184 107913Google Scholar

    [25]

    Gong S, Cheng P 2012 Int. J. Heat Mass Transfer 55 4923Google Scholar

    [26]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [27]

    Chai Z H, Zhao T S 2012 Phys. Rev. E 86 016705Google Scholar

    [28]

    Panofsky W, Phillips M, Jauch J M 1956 Am. J. Phys. 24 416

    [29]

    He X Y, Ning L 2000 Comput. Phys. Commun. 129 158Google Scholar

    [30]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [31]

    Chai Z H, Liang H, Du R, Shi B C 2019 SIAM J. Sci. Comput. 41 B746Google Scholar

    [32]

    Wang L, Wei Z C, Li T F, Chai Z H, Shi B C 2021 Appl. Math. Model. 95 361Google Scholar

    [33]

    Wang H Y, Lou Q, Liu G J, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [34]

    Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar

    [35]

    Ladd A J C 1994 J. Fluid Mech. 271 285Google Scholar

    [36]

    Li L, Chen C, Mei R, Mei M, Klausner J 2014 Phys. Rev. E 89 043308Google Scholar

    [37]

    Gong S, Cheng P 2017 Int. Commun. Heat Mass Transfer 87 61Google Scholar

    [38]

    Li Q, Yu Y, Luo K H 2019 Phys. Rev. E 100 053313Google Scholar

    [39]

    Sadasivan P, Unal C, Nelson R 1995 J. Heat Transfer 117 558Google Scholar

    [40]

    柴立和, 彭晓峰, 王补宣 1999 原子能科学技术 33 533

    Chai L H, Peng X F, Wang B X 1999 Atomic Energy Sci. Techno. 33 533

    [41]

    Berghmans J 1976 Int. J. Heat Mass Transfer 19 791Google Scholar

    [42]

    Johnson R 1968 AIAA J. 6 8

  • 图 1  物理问题示意图

    Fig. 1.  Schematic diagram of the physical problem.

    图 2  平滑表面和锥翅表面的沸腾曲线

    Fig. 2.  Boiling curves for smooth and conical surfaces.

    图 3  $ T_{\rm{b}}=0.96 T_{\rm{c}} $时, 平滑表面和锥翅表面的沸腾过程

    Fig. 3.  Snapshots of the boiling processes on smooth and conical surfaces under $ T_{\rm{b}}=0.96 T_{\rm{c}} $.

    图 4  $ t^*=33.50 $时刻, 加热温度为$ T_{\rm{b}}=0.96 T_{\rm{c}} $的温度分布

    Fig. 4.  Temperature distribution during the boiling process with $ T_{\rm{b}} = 0.96 T_{\rm{c}} $ and $ t^*=33.50 $.

    图 5  $ T_{\rm{b}}=1.04 T_{\rm{c}} $时, 平滑表面 (a)和锥翅表面 (b)的沸腾过程及流场分布

    Fig. 5.  Snapshots of the boiling process and the flow field distributions on smooth (a) and conical (b) surfaces under $ T_{\rm{b}}=1.04 T_{\rm{c}} $.

    图 6  加热温度$ T_{\rm{b}}=1.04 T_{\rm{c}} $下, 平滑表面和锥翅表面空间平均热流密度随时间的变化

    Fig. 6.  The time histories of space-averaged heat flux on smooth and conical surfaces under $ T_{\rm{b}}=1.04 T_{\rm{c}} $.

    图 7  $ T_{\rm{b}}=1.06 T_{\rm{c}} $, 平滑表面 (a)和锥翅表面 (b)的沸腾过程和对应的流场分布

    Fig. 7.  Snapshots of the boiling process and the flow field distributions on smooth (a) and conical (b) surfaces under $ T_{\rm{b}}=1.06 T_{\rm{c}} $.

    图 8  $ T_{\rm{b}}=1.12 T_{\rm{c}} $, 平滑表面 (a)和锥翅表面 (b)的沸腾过程

    Fig. 8.  Snapshots of the boiling processes on smooth (a) and conical (b) surfaces under $ T_{\rm{b}}=1.12 T_{\rm{c}} $.

    图 9  加热温度为$ T_{\rm{b}}=1.12 T_{\rm{c}} $, $ t^*=96.03 $时刻平滑表面和锥翅表面的局部热流密度

    Fig. 9.  Local heat flux on smooth and conical surfaces with $ T_{\rm{b}}=1.12 T_{\rm{c}} $ and $ t^*=96.03 $.

    图 10  $ T_{\rm{b}}=0.96 T_{\rm{c}} $时, 不同电场强度下锥翅表面的沸腾过程 (a) E0 = 0; (b) E0 = 0.0517; (c) E0 = 0.0862; (d) E0 = 0.1207

    Fig. 10.  Snapshots of boiling processes on the conical surface at $ T_{\rm{b}}=0.96 T_{\rm{c}} $ under different electric field intensities: (a) E0 = 0; (b) E0 = 0.0517; (c) E0 = 0.0862; (d) E0 = 0.1207

    图 11  加热温度$ T_{\rm{b}}=0.96 T_{\rm{c}} $, 不同电场强度作用下锥翅表面空间平均热流密度随时间的变化

    Fig. 11.  The time histories of space-averaged heat flux on the conical surface with $ T_{\rm{b}}=0.96 T_{\rm{c}} $ under different electric field intensities.

    图 12  $ T_{\rm{b}}=1.04 T_{\rm{c}} $下, 电场强度$ E_0=0 $ (a) 和 $ E_0= $$ 0.0862 $ (b)时锥翅表面的沸腾过程及局部电场力分布

    Fig. 12.  Snapshots of boiling processes and the distribution of localized electric field forces on the conical surface at $ T_{\rm{b}}=1.04 T_{\rm{c}} $ with $ E_0=0 $ (a) and $ E_0=0.0862 $ (b).

    图 13  锥翅结构周围电场强度的模$ |\boldsymbol{E}| $的分布(电势差$ V= $$ 50 $, $ t^*=44.66 $)

    Fig. 13.  Distribution of electric field strength $ |\boldsymbol{E}| $ around the conical structure (potential difference $ V=50 $, $ t^*= $$ 44.66 $).

    图 14  加热温度$ T_{\rm{b}}=1.04 T_{\rm{c}} $时, 电场强度分别为$ E_0=0 $和$ E_0=0.0862 $的空间平均热流密度随时间的变化

    Fig. 14.  The time histories of space-averaged heat flux with $ T_{\rm{b}}=1.04 T_{\rm{c}} $ under different electric intensities of $ E_0=0 $ and $ E_0=0.0862 $.

    图 15  $ E_0=0.1207 $时不同壁面过热度得到的锥翅表面的沸腾过程及局部电场力分布 (a) Tb = 1.06 Tc; (b) Tb = 1.12 Tc

    Fig. 15.  Snapshots of boiling processes and the distribution of localized electric field forces on the conical surface with $ E_0=0.1207 $ under different wall superheat degrees: (a) Tb = 1.06 Tc; (b) Tb = 1.12 Tc.

    图 16  电场强度$ E_0=0 $和$ E_0=0.1207 $时(a)$ T_{\rm{b}}=1.06 T_{\rm{c}} $ 和(b)$ T_{\rm{b}}=1.12 T_{\rm{c}} $的空间热流密度随时间的变化

    Fig. 16.  The time histories of space-averaged heat flux with $ E_0=0 $ and $ E_0=0.1207 $ under (a)$ T_{\rm{b}}=1.06 T_{\rm{c}} $ and (b)$ T_{\rm{b}}=1.12 T_{\rm{c}} $.

    图 17  锥翅表面不同电场强度下的沸腾曲线

    Fig. 17.  Boiling curves on the conical surface for different electric field intensities.

    表 1  格子单位与物理单位转换

    Table 1.  The unit conversion from lattice unit to physical unit.

    符号 格子单位 物理单位 转换因子
    $ \rho_{\rm{l}} $ 5.426 570.02 $ {\rm{kg/m^3}} $ 106.16 $ {\rm{kg/m^3}} $
    $ \rho_{\rm{v}} $ 0.8113 86.13 $ {\rm{kg/m^3}} $ 106.16 $ {\rm{kg/m^3}} $
    $ l_0 $ 16 $ 4.72\times 10^{-6}\;{\rm{m}} $ $ 2.95\times 10^{-7}\;{\rm{m}} $
    $ u_0 $ 0.0358 38.56 $ {\rm{m/s}} $ 1077.09 $ {\rm{m/s}} $
    $ t_0 $ 447.8 $ 1.224\times 10^{-7}\;{\rm{s}} $ $ 2.734\times 10^{-10}\;{\rm{s}} $
    $ \nu $ 0.06 $ 0.19\times 10^{-4}\;{\rm{m^2/s}} $ $ 3.18\times 10^{-4}\;{\rm{m^2/s}} $
    $ T_{\rm{c}} $ 0.1961 647.2 $ {\rm{K}} $ 3300.36 $ {\rm{K}} $
    $ p_{\rm{c}} $ 0.1784 $ 0.221\times 10^{8}\;{\rm{Pa}} $ $ 1.24\times 10^{8}\;{\rm{Pa}} $
    $ c_{\rm{vl}} $ 4.0 1405.9 $ {\rm{J/(kg\cdot K)}} $ 351.48 $ {\rm{J/(kg\cdot K)}} $
    $ h_{\rm{fg}} $ 0.624 $ 0.726\times 10^{6}\;{\rm{J/kg}} $ $ 1.16\times 10^{6}\;{\rm{J/kg}} $
    $ \lambda_{\rm{s}} $ 32.556 390.67 $ {\rm{W/(m\cdot K)}} $ 12.0 $ {\rm{W/(m\cdot K)}} $
    $ q_0 $ 0.01269 $ 1.69\times 10^{9}\;{\rm{J/(m^2\cdot s)}} $ $ 1.33\times 10^{11}\;{\rm{J/(m^2\cdot s)}} $
    $ \varepsilon_0\varepsilon_{\rm{l}} $ 2.236 $ 1.98\times 10^{-11}\;{\rm{F/m}} $ $ 8.85\times 10^{-12}\;{\rm{F/m}} $
    $ \varepsilon_0\varepsilon_{\rm{v}} $ 1 $ 8.85\times 10^{-12}\;{\rm{F/m}} $ $ 8.85\times 10^{-12}\;{\rm{F/m}} $
    $ V $ 1 1096.96 $ {\rm{V}} $ 1096.96 $ {\rm{V}} $
    下载: 导出CSV
  • [1]

    Zaidi S 2015 Chem. Eng. Res. Des. 98 44Google Scholar

    [2]

    Massih A R, Persson S 1992 J. Nucl. Mater. 188 323Google Scholar

    [3]

    Mohammed H I, Giddings D, Walker G S 2019 Int. J. Heat Mass Transfer 130 710Google Scholar

    [4]

    Nikolayev V S, Chatain D, Garrabos Y, Beysens D 2006 Phys. Rev. Lett. 97 184503Google Scholar

    [5]

    Li W, Dai R K, Zeng M, Wang Q W 2020 Renew. Sust. Energ. Rev. 130 109926Google Scholar

    [6]

    Tian Z, Etedali S, Afrand M, Abdollahi A, Goodarzi M 2019 Powder Technol. 356 391Google Scholar

    [7]

    Wei J J, Honda H 2003 Int. J. Heat Mass Transfer 46 4059Google Scholar

    [8]

    Li Q, Zhao J H, Sun X Z, Liu B 2022 Appl. Therm. Eng. 215 118924Google Scholar

    [9]

    Kong X, Zhang Y H, Wei J J 2018 Exp. Therm. Fluid Sci. 91 9Google Scholar

    [10]

    Kim S H, Lee C G, Kang J Y, Moriyama K, Kim M H, Park H S 2015 Int. J. Heat Mass Transfer 91 1140Google Scholar

    [11]

    Elkholy A, Swift J, Kempers R 2023 Appl. Therm. Eng 219 119665Google Scholar

    [12]

    Clubb L 1916 UK Patent 100796 [1916-07-09

    [13]

    Dong W, Li R Y, Yu H L, Yan Y Y 2006 Exp. Therm. Fluid Sci. 30 579Google Scholar

    [14]

    Gao M, Cheng P, Quan X J 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [15]

    Hristov Y, Zhao D, Kenning D B R, Sefiane K, Karayiannis T G 2009 Heat Mass Transfer 45 999Google Scholar

    [16]

    Garivalis A I, Manfredini G, Saccone G, Di Marco P, Kossolapov A, Bucci M 2021 NPJ Microgravity 7(1) 37Google Scholar

    [17]

    Quan X J, Gao M, Cheng P, Li J S 2015 Int. J. Heat Mass Transfer 85 595Google Scholar

    [18]

    Liu B, Garivalis A I, Cao Z, Zhang Y, Wei J 2022 Int. J. Heat Mass Transfer 183 122154Google Scholar

    [19]

    Liu X, Chai Z H, Shi B C 2019 Phys. Fluids 31 092103Google Scholar

    [20]

    Liu X, Chai Z H, Shi B C 2021 Commun. Comput. Phys. 30 1346Google Scholar

    [21]

    Feng Y, Li H, Guo K, Lei X, Zhao J 2019 Int. J. Heat Mass Transfer 135 885Google Scholar

    [22]

    Li W X, Li Q, Chang H Z, Yu Y, Tang S 2022 Phys. Fluids 34 123327Google Scholar

    [23]

    Lou Q, Wang H Y, Li L 2023 Phys. Fluids 35 123327Google Scholar

    [24]

    Ezzatneshan E, Salehi A, Vaseghnia H 2023 Int. J. Therm. Sci 184 107913Google Scholar

    [25]

    Gong S, Cheng P 2012 Int. J. Heat Mass Transfer 55 4923Google Scholar

    [26]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [27]

    Chai Z H, Zhao T S 2012 Phys. Rev. E 86 016705Google Scholar

    [28]

    Panofsky W, Phillips M, Jauch J M 1956 Am. J. Phys. 24 416

    [29]

    He X Y, Ning L 2000 Comput. Phys. Commun. 129 158Google Scholar

    [30]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [31]

    Chai Z H, Liang H, Du R, Shi B C 2019 SIAM J. Sci. Comput. 41 B746Google Scholar

    [32]

    Wang L, Wei Z C, Li T F, Chai Z H, Shi B C 2021 Appl. Math. Model. 95 361Google Scholar

    [33]

    Wang H Y, Lou Q, Liu G J, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [34]

    Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar

    [35]

    Ladd A J C 1994 J. Fluid Mech. 271 285Google Scholar

    [36]

    Li L, Chen C, Mei R, Mei M, Klausner J 2014 Phys. Rev. E 89 043308Google Scholar

    [37]

    Gong S, Cheng P 2017 Int. Commun. Heat Mass Transfer 87 61Google Scholar

    [38]

    Li Q, Yu Y, Luo K H 2019 Phys. Rev. E 100 053313Google Scholar

    [39]

    Sadasivan P, Unal C, Nelson R 1995 J. Heat Transfer 117 558Google Scholar

    [40]

    柴立和, 彭晓峰, 王补宣 1999 原子能科学技术 33 533

    Chai L H, Peng X F, Wang B X 1999 Atomic Energy Sci. Techno. 33 533

    [41]

    Berghmans J 1976 Int. J. Heat Mass Transfer 19 791Google Scholar

    [42]

    Johnson R 1968 AIAA J. 6 8

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制. 物理学报, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 孟现文. 电场方向对一维断裂纳米通道连接处水桥的结构影响研究. 物理学报, 2024, 73(9): 093102. doi: 10.7498/aps.73.20240027
    [3] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻. 物理学报, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] 胡剑, 张森, 娄钦. 电场和加热器特性对饱和池沸腾传热影响的介观数值方法研究. 物理学报, 2023, 72(17): 176401. doi: 10.7498/aps.72.20230341
    [5] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究. 物理学报, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [6] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [7] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [8] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [9] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [10] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下二氧化锆的分子结构及其特性. 物理学报, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [11] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [12] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [13] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下2,2,5,5-四氯联苯的分子结构与电子光谱. 物理学报, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [15] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [16] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [18] 阮 文, 罗文浪, 张 莉, 朱正和. 外电场作用下苯乙烯分子结构和电子光谱. 物理学报, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  785
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-16
  • 修回日期:  2023-09-27
  • 上网日期:  2023-10-20
  • 刊出日期:  2024-01-20

/

返回文章
返回