-
GaN基高电子迁移率晶体管(HEMT)相对较低的击穿电压严重限制了其大功率应用.为了进一步改善器件的击穿特性,通过在n-GaN外延缓冲层中引入六个等间距p-GaN岛掩埋缓冲层(PIBL)构成p-n结,提出一种基于p-GaN埋层结构的新型高耐压AlGaN/GaN HEMT器件结构.Sentaurus TCAD仿真结果表明,在关态高漏极电压状态下,p-GaN埋层引入的多个反向p-n结不仅能够有效调制PIBL AlGaN/GaN HEMT的表面电场和体电场分布,而且对于缓冲层泄漏电流有一定的抑制作用,这保证了栅漏间距为10 μm的PIBL HEMT能够达到超过1700 V的高击穿电压(BV),是常规结构AlGaN/GaN HEMT击穿电压(580 V)的3倍.同时,PIBL结构AlGaN/GaN HEMT的特征导通电阻仅为1.47 mΩ ·cm2,因此获得了高达1966 MW·cm-2的品质因数(FOM=BV2/Ron,sp).相比于常规的AlGaN/GaN HEMT,基于新型p-GaN埋岛结构的HEMT器件在保持较低特征导通电阻的同时具有更高的击穿电压,这使得该结构在高功率电力电子器件领域具有很好的应用前景.
-
关键词:
- AlGaN/GaN /
- p-GaN岛掩埋缓冲层 /
- 电场 /
- 击穿
The relatively low breakdown voltage (BV) seriously restricts the high power application of GaN based high electron mobility transistors (HEMTs). In this work, a novel AlGaN/GaN HEMT with buried p-n junctions is investigated to improve the breakdown characteristics by introducing six equidistant p-GaN islands buried buffer layer (PIBL) into the n-GaN epitaxial layer. The p-GaN islands act as reversed p-n junctions, which produces new electric field peaks at the edges of p-GaN islands, then realizing a much high breakdown voltage, and the reversed p-n junctions can help to suppress punch-through effect in buffer layer. Furthermore, the characteristics of proposed device are analyzed in detail from the aspects of off-state I-V characteristics, equipotential contour distribution, off-state electric field distribution, offstate carrier distribution and output characteristics. Simulated equipotential contour distribution shows that under the condition of high-voltage blocking state, multiple reverse p-n junctions introduced by the buried p-GaN islands produce five new electric field peaks, realizing a more uniform equipotential contour distribution especially at the edges of the buried p-islands. Then off-state electric field distribution demonstrates that p-GaN islands modulate the surface and bulk electric fields, which makes the voltage distributed in a larger area, therefore presenting a much higher breakdown voltage. It can be seen from off-state carrier distribution that the electrons in the buffer layer fully depleted in PIBL HEMT effectively suppress the buffer leakage current, thus alleviating the buffer-leakage-induced impact ionization leading to a high breakdown BV of over 1700 V with gate-to-drain length of 10μm, which is nearly 3 times larger than BV of 580 V in conventional AlGaN/GaN HEMT. Although, the introduction of p-type buried layer narrows the current path and causes an improved on-resistance, simulation shows that the specific on-resistance (Ron,sp) of PIBL HEMT is only about 1.47 mΩ·cm2, while the BV of the PIBL device is over 1700 V, and the obtained figure of merit (FOM=BV2/Ron,sp) reaches as high as 1966 MW·cm-2. The optimization of device structure reveals that when the distance between p-GaN layer and AlGaN layer (t) is 0.2μm, a thinner buried p-GaN island (tp) should help to realize a more significant electric field modulation, and PIBL HEMT can achieve a maximum BV of 1789 V with a tp=0.1μm. Compared with the traditional AlGaN/GaN HEMT, the PIBL HEMT reveals a higher breakdown voltage, meanwhile ensuring low Ron,sp, which makes this structure a promising candidate in the applications of high power electronic devices.-
Keywords:
- AlGaN/GaN /
- p-GaN island buried buffer layer /
- electric field /
- breakdown
[1] Zhang W, Li X, Zhang J, Jiang H, Xu X, Guo Z, He Y, Hao Y 2016 Phys. Status Solidi 213 2203
[2] Yu X X, Ni J Y, Li Z H, Kong C, Zhou J J, Dong X, Pan L, Kong Y C, Chen T S 2014 Chin. Phys. Lett. 31 037201
[3] Xie G, Edward X, Hashemi N, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105
[4] Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F, Kuang X W 2011 Chin. Phys. B 20 017203
[5] Luo J, Zhao S H, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H, Hao Y 2016 Chin. Phys. B 25 027303
[6] Li X, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J 2017 IEEE Electron. Dev. Lett. 38 99
[7] Mi M H, Zhang K, Chen X, Zhao S L, Wang C, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 077304
[8] Xie G, Edward X, Lee J, Hashemi N, Zhang B, Fu F Y 2012 IEEE Electron. Dev. Lett. 33 670
[9] Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P, Mishra U K 2000 IEEE Electron. Dev. Lett. 21 421
[10] Kim Y, Lim J, Kim M, Han M 2015 Phys. Status Solidi C 8 453
[11] Deguchi T, Kamada A, Yamashita M, Tomita H, Arai M, Yamasaki K, Egawa T 2012 Electron. Lett. 48 109
[12] Nanjo T, Kurahashi K, Imai A, Suzuki Y, Nakmura M, Suita M, Yagyu E 2014 Electron. Lett. 50 1577
[13] Wang M, Chen K J 2010 IEEE Trans. Electron Dev. Lett. 57 1492
[14] Boles T, Varmazis C, Carlson D, Palacios T, Turner G W, Molnar R J 2013 Phys. Status Solidi 10 844
[15] Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104
[16] Cheng J B, Zhang B, Sun W F, Shi L X, Li Z J 2014 Superlattice Microst. 76 288
[17] Cheng J B, Zhang B, Li Z J 2008 Electron. Lett. 44 933
[18] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Parikh P 2004 IEEE Electron Dev. Lett. 25 117
[19] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron. Dev. Lett. 24 289
[20] Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305
[21] Cheng X, Sin J K O, Shen J, Huai Y J, Li R Z, Wu Y, Kang B W 2003 IEEE Trans. Electron. Dev. 50 2273
[22] Dora Y, Chakraborty A, Heikman S, Mccarthy L, Keller S, Denbaars P 2006 IEEE Electron Dev. Lett. 27 529
[23] Verzellesi G, Morassi L, Meneghesso G, Meneghini M, Zanoni E, Pozzovivo G 2014 IEEE Electron Dev. Lett. 35 443
-
[1] Zhang W, Li X, Zhang J, Jiang H, Xu X, Guo Z, He Y, Hao Y 2016 Phys. Status Solidi 213 2203
[2] Yu X X, Ni J Y, Li Z H, Kong C, Zhou J J, Dong X, Pan L, Kong Y C, Chen T S 2014 Chin. Phys. Lett. 31 037201
[3] Xie G, Edward X, Hashemi N, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105
[4] Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F, Kuang X W 2011 Chin. Phys. B 20 017203
[5] Luo J, Zhao S H, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H, Hao Y 2016 Chin. Phys. B 25 027303
[6] Li X, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J 2017 IEEE Electron. Dev. Lett. 38 99
[7] Mi M H, Zhang K, Chen X, Zhao S L, Wang C, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 077304
[8] Xie G, Edward X, Lee J, Hashemi N, Zhang B, Fu F Y 2012 IEEE Electron. Dev. Lett. 33 670
[9] Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P, Mishra U K 2000 IEEE Electron. Dev. Lett. 21 421
[10] Kim Y, Lim J, Kim M, Han M 2015 Phys. Status Solidi C 8 453
[11] Deguchi T, Kamada A, Yamashita M, Tomita H, Arai M, Yamasaki K, Egawa T 2012 Electron. Lett. 48 109
[12] Nanjo T, Kurahashi K, Imai A, Suzuki Y, Nakmura M, Suita M, Yagyu E 2014 Electron. Lett. 50 1577
[13] Wang M, Chen K J 2010 IEEE Trans. Electron Dev. Lett. 57 1492
[14] Boles T, Varmazis C, Carlson D, Palacios T, Turner G W, Molnar R J 2013 Phys. Status Solidi 10 844
[15] Ha W J, Chhajed S, Oh S J, Hwang S Y, Kim J K, Lee J H, Kim K S 2012 Appl. Phys. Lett. 100 132104
[16] Cheng J B, Zhang B, Sun W F, Shi L X, Li Z J 2014 Superlattice Microst. 76 288
[17] Cheng J B, Zhang B, Li Z J 2008 Electron. Lett. 44 933
[18] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Parikh P 2004 IEEE Electron Dev. Lett. 25 117
[19] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T, Kuzuhara M 2003 IEEE Electron. Dev. Lett. 24 289
[20] Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305
[21] Cheng X, Sin J K O, Shen J, Huai Y J, Li R Z, Wu Y, Kang B W 2003 IEEE Trans. Electron. Dev. 50 2273
[22] Dora Y, Chakraborty A, Heikman S, Mccarthy L, Keller S, Denbaars P 2006 IEEE Electron Dev. Lett. 27 529
[23] Verzellesi G, Morassi L, Meneghesso G, Meneghini M, Zanoni E, Pozzovivo G 2014 IEEE Electron Dev. Lett. 35 443
计量
- 文章访问数: 7331
- PDF下载量: 327
- 被引次数: 0