搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN HEMT欧姆接触模式对电学特性的影响

朱彦旭 曹伟伟 徐晨 邓叶 邹德恕

引用本文:
Citation:

GaN HEMT欧姆接触模式对电学特性的影响

朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕

Effect of different ohmic contact pattern on GaN HEMT electrical properties

Zhu Yan-Xu, Cao Wei-Wei, Xu Chen, Deng Ye, Zou De-Shu
PDF
导出引用
  • 本文制备了AlGaN/GaN HEMT器件中常规结构与带有纵向接触孔结构的两种接触电极,研究了该两种源欧姆接触模式对器件电学特性的影响. 在相同条件下进行快速退火,发现在750 ℃下退火30 s后,常规结构还没有形成欧姆接触,而带有纵向欧姆接触孔的接触电极与外延片已经形成了良好的欧姆接触. 同时,比较了Ti/Al/Ti/Au 和Ti/Al/Ni/Au电极退火后表面形态,Ti/Al/Ni/Au具有更好的表面形貌. 通过测试两种结构的HEMT器件后,发现采用纵向欧姆接触孔结构器件具有更高的跨导和饱和电流,但是也会在栅极电压为0.5–2 V之间产生严重的电流崩塌现象.
    In this paper, the AlGaN/GaN HEMT (high electron mobility transistors) with different ohmic contact structures are fabricated, and the effect of different ohmic contact pattern on GaN HEMT electrical properties is studied. A conventional ohmic contact electrode structure and a new ohmic contact structure with a contact hole are fabricated and subjected to rapid thermal annealing (RTA) in flowing N2. After different structured AlGaN/GaN HEMTs are annealed at 750 ℃ for 30 seconds, in HEMTs with a conventional structure ohmic contact still does not form while in the device with ohmic contact holes a good ohmic contact is already formed. Then the surface morphology of different multilayer electrode structures is measured. Comparing Ti/Al/Ti/Au with Ti/Al/Ni/Au, we can conclude that the structure Ti/Al/Ni/Au has a more smooth surface after annealing. After testing the HEMT devices with different structures, higher transconductance and saturation current are found for the devices with ohmic contact holes. But a serious current collapse phenomenon has been observed when the gate voltage is set between 0.5 V and 2 V.
    • 基金项目: 北京市教委基金(批准号:KM201210005004)和国家自然科学基金(批准号:61107026)资助的课题.
    • Funds: Project supported by the Foundation of Beijing Municipal Education Commission (Grant No. KM201210005004), and the National Natural Science Foundation of China (Grant No. 61107026).
    [1]

    Xie G, Edward X, Niloufar H, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105

    [2]

    Kong X, Wei K, Liu G G, Liu X Y 2012 Chin. Phys. B 21 128501

    [3]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, Chen K J 2012 物理学报 61 247302]

    [4]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 57302 (in Chinese) [段宝兴, 杨银堂 2014 物理学报 63 57302]

    [5]

    Mishra U K, Parikh P, Wu Y F 2002 Proceedings of the IEEE 90 1022

    [6]

    Miller M A, Mohney S E 2007 Appl. Phys. Lett. 91 12103

    [7]

    Dong Z, Wang J, Gong R, Liu S H, Wen C P, Yu M, Xu F J, Hao Y L, Shen B, Wang Y Y 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, November 1-4, 2010 p1359

    [8]

    Van Daele B, Van Tendeloo G, Derluyn J, Shrivastava P, Lorenz A, Leys M R, Germain M 2006 Appl. Phys. Lett. 89 201908

    [9]

    Van Daele B, Van Tendeloo G, Ruythooren W, Derluyn J, Leys M R, Germain M 2005 Appl. Phys. Lett. 87 61905

    [10]

    Zhu Y X, Fan Y Y, Cao W W, Deng Y, Liu J P 2013 Chin. J. Lumin. 34 1362 (in Chinese) [朱彦旭, 范玉宇, 曹伟伟, 邓叶, 刘建朋 2013 发光学报 34 1362]

    [11]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Transactions on Electron Devices 48 560

    [12]

    Hasegawa H, Inagaki T, Ootomo S, Hashizume T 2003 Journal of Vacuum Science m& Technology B: Microelectronics and Nanometer Structures 21 1844

    [13]

    Binari S C, Ikossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE Transactions on Electron Devices 48 465

    [14]

    Wei W, Lin R B, Feng Q, Hao Y 2008 Acta Phys. Sin. 57 467 (in Chinese) [魏巍, 林若兵, 冯倩, 郝跃 2008 物理学报 57 467]

    [15]

    Gong X, Lv N, Hao Y, Li P X, Zhou X W, Chen H F 2007 Chinese Journal of Semiconductors 28 1097

    [16]

    Lee B H, Lee S D, Kim S D, Hwang I S, Park H C, Park H M, Rhee J K 2001 Joural of The Electrochemical Society 148 592

  • [1]

    Xie G, Edward X, Niloufar H, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105

    [2]

    Kong X, Wei K, Liu G G, Liu X Y 2012 Chin. Phys. B 21 128501

    [3]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, Chen K J 2012 物理学报 61 247302]

    [4]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 57302 (in Chinese) [段宝兴, 杨银堂 2014 物理学报 63 57302]

    [5]

    Mishra U K, Parikh P, Wu Y F 2002 Proceedings of the IEEE 90 1022

    [6]

    Miller M A, Mohney S E 2007 Appl. Phys. Lett. 91 12103

    [7]

    Dong Z, Wang J, Gong R, Liu S H, Wen C P, Yu M, Xu F J, Hao Y L, Shen B, Wang Y Y 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, November 1-4, 2010 p1359

    [8]

    Van Daele B, Van Tendeloo G, Derluyn J, Shrivastava P, Lorenz A, Leys M R, Germain M 2006 Appl. Phys. Lett. 89 201908

    [9]

    Van Daele B, Van Tendeloo G, Ruythooren W, Derluyn J, Leys M R, Germain M 2005 Appl. Phys. Lett. 87 61905

    [10]

    Zhu Y X, Fan Y Y, Cao W W, Deng Y, Liu J P 2013 Chin. J. Lumin. 34 1362 (in Chinese) [朱彦旭, 范玉宇, 曹伟伟, 邓叶, 刘建朋 2013 发光学报 34 1362]

    [11]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Transactions on Electron Devices 48 560

    [12]

    Hasegawa H, Inagaki T, Ootomo S, Hashizume T 2003 Journal of Vacuum Science m& Technology B: Microelectronics and Nanometer Structures 21 1844

    [13]

    Binari S C, Ikossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE Transactions on Electron Devices 48 465

    [14]

    Wei W, Lin R B, Feng Q, Hao Y 2008 Acta Phys. Sin. 57 467 (in Chinese) [魏巍, 林若兵, 冯倩, 郝跃 2008 物理学报 57 467]

    [15]

    Gong X, Lv N, Hao Y, Li P X, Zhou X W, Chen H F 2007 Chinese Journal of Semiconductors 28 1097

    [16]

    Lee B H, Lee S D, Kim S D, Hwang I S, Park H C, Park H M, Rhee J K 2001 Joural of The Electrochemical Society 148 592

  • [1] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [2] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [3] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [4] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [5] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管. 物理学报, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [6] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [7] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [8] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [9] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [10] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [11] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [12] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [13] 封飞飞, 刘军林, 邱冲, 王光绪, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [14] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [15] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [16] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [17] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [18] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [19] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [20] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
计量
  • 文章访问数:  3332
  • PDF下载量:  960
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-16
  • 修回日期:  2014-02-27
  • 刊出日期:  2014-06-05

GaN HEMT欧姆接触模式对电学特性的影响

  • 1. 北京工业大学, 省部共建光电子重点实验室, 北京 100124
    基金项目: 北京市教委基金(批准号:KM201210005004)和国家自然科学基金(批准号:61107026)资助的课题.

摘要: 本文制备了AlGaN/GaN HEMT器件中常规结构与带有纵向接触孔结构的两种接触电极,研究了该两种源欧姆接触模式对器件电学特性的影响. 在相同条件下进行快速退火,发现在750 ℃下退火30 s后,常规结构还没有形成欧姆接触,而带有纵向欧姆接触孔的接触电极与外延片已经形成了良好的欧姆接触. 同时,比较了Ti/Al/Ti/Au 和Ti/Al/Ni/Au电极退火后表面形态,Ti/Al/Ni/Au具有更好的表面形貌. 通过测试两种结构的HEMT器件后,发现采用纵向欧姆接触孔结构器件具有更高的跨导和饱和电流,但是也会在栅极电压为0.5–2 V之间产生严重的电流崩塌现象.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回