搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理

郝蕊静 郭红霞 潘霄宇 吕玲 雷志锋 李波 钟向丽 欧阳晓平 董世剑

引用本文:
Citation:

AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理

郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑

Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor

Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian
PDF
HTML
导出引用
  • 针对AlGaN/GaN高电子迁移率晶体管器件和异质结构在西安脉冲反应堆上开展了中子位移损伤效应研究, 等效1 MeV中子注量为1 × 1014 n/cm2. 测量了器件在中子辐照前后的直流特性和1/f 噪声特性, 并对测试结果进行理论分析, 结果表明: 中子辐照在器件内引入体缺陷, 沟道处的体缺陷通过俘获电子和散射电子, 造成器件电学性能退化, 主要表现为阈值电压正漂、输出饱和漏电流减小以及栅极泄漏电流增大. 经过低频噪声的测试计算得到, 中子辐照前后, 器件沟道处的缺陷密度由1.78 × 1012 cm–3·eV–1增大到了1.66 × 1014 cm–3·eV–1. 采用C-V测试手段对肖特基异质结进行测试分析, 发现沟道载流子浓度在辐照后有明显降低, 且平带电压也正向漂移. 分析认为中子辐照器件后, 在沟道处产生了大量缺陷, 这些缺陷会影响沟道载流子的浓度和迁移率, 进而影响器件的电学性能.
    In this paper, neutron-induced displacement damage effects of AlGaN/GaN High electron mobility ransistor (HEMT) device and heterostructure on the Xi’an pulse reactor are studied. The equivalent 1 MeV neutron fluence is 1 × 1014 n/cm2. The direct-current characteristics and low frequency noise characteristics of the HEMT deviceare used to characterize the performances before and after being irradiated by the neutrons, and then the experimental results are analyzed theoretically. The analysis results showed that the displacement damage effect caused by the neutron irradiation will introduce the bulk defects into the device. The bulk defects at the channel cause the electrical performance of the device to degrade through trapping electrons and scattering electrons, which are mainly manifested as the drift of positive threshold voltage, the decrease of output saturation drain current, and the increase of gate leakage current. In order to further confirm the effect of neutron irradiation on the defect density of the device, we implement the low-frequency noise test and the calculation of the device, and the results show that the defect density at the channel of the device increases from 1.78 × 1012 cm–3·eV–1 to 1.66 × 1014 cm–3·eV–1, which is consistent with the results of the electrical characteristics test, indicating that the new defects introduced by neutron irradiation do degrade the electrical performance of the device. At the same time, the capacitor-voltage test is also carried out to analyze the Schottky heterojunctions before and after neutron irradiation. It is found that the channel carrier concentration is significantly reduced after irradiation, and the flat band voltage also drifts positively. The analysis shows that after irradiating the device with neutrons, a large number of defects will be generated in the channel, and these defects will affect the concentration and mobility of the channel carriers, which in turn will influence the electrical performance of the device. These experimental results can be used for designing the AlGaN/GaN high electron mobility transistor for radiationhard reinforcement.
      通信作者: 郭红霞, guohxnint@126.com
      Corresponding author: Guo Hong-Xia, guohxnint@126.com
    [1]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [2]

    Jun B, Subramanian S 2001 IEEE Trans. Electron. Dev. 48 2250

    [3]

    Gu W P, Hao Y, Yang L A 2010 Phys. Status Solidi C 7 1991Google Scholar

    [4]

    Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M, Zanoni E 2008 IEEE Trans. Dev. 8 332

    [5]

    Zhang D X, Chen W, Luo Y H, Liu Y, Guo X Q 2018 Appl. Phys. 9 53

    [6]

    刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 物理学报 62 140703Google Scholar

    Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703Google Scholar

    [7]

    Jayarman R, Sodini C G 1989 IEEE Trans. Dev. 36 1773Google Scholar

    [8]

    Fleetwood D M, Shaneyfelt M R, Schwank J R 1994 Appl. Phys Lett. 64 1965Google Scholar

    [9]

    彭绍泉, 杜磊, 何亮, 陈伟华, 庄奕琪, 包军林 2008 物理学报 57 5205Google Scholar

    Peng S Q, Du L, He L, Chen W H, Zhuang Y Q, Bao J L 2008 Acta Phys. Sin. 57 5205Google Scholar

    [10]

    刘远, 陈海波, 何玉娟 2015 物理学报 64 078501Google Scholar

    Liu Y, Chen H B, He Y J 2015 Acta Phys. Sin. 64 078501Google Scholar

    [11]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lü L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [12]

    White B D, Bataiev M, Goss S H and Brillson L J 2003 IEEE Trans.Nucl. Sci. 50 1934Google Scholar

    [13]

    Rajan S, Xing H, DenBaars S, Jena D 2004 Appl. Phys. Lett. 64 1591

    [14]

    Rashmi A, Kranti S, Haldar, Gupta R S 2002 Solid State Electron. 51 16

    [15]

    Rajan S, Xing H, DenBaars S, Jena D 2004 Appl. Phys Lett. 84 1591Google Scholar

    [16]

    Delagebeaudeuf D, Linh N T 1982 IEEE Trans. Electron. Dev. 6 955

    [17]

    Xiong H D 2004 Ph. D. Dissertation (Nashville: Vanderbilt University)

    [18]

    Scofield J H, Fleetwood D M 1991 IEEE Trans. Nucl. Sci. 38 1567Google Scholar

    [19]

    Chen Y Q, Zhang Y C, Liu Y 2018 IEEE Trans. Electron. Dev. 65 1Google Scholar

    [20]

    刘宇安 2014 博士学位论文 (西安: 西安电子科技大学)

    Liu Y A 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [21]

    Casey H C, Fountain G G, Alley R G, Keller B P 1996 Appl. Phys. Lett. 68 1850Google Scholar

    [22]

    Arulkumaran S, Egawa T, Ishikawa H 2002 Appl. Phys. Lett. 80 2186Google Scholar

    [23]

    Grove A S 1976 Physics and Technology of Semiconductor Devices (New York: JohnWiley and Sons) pp267−271

  • 图 1  AlGaN/GaN HEMT器件结构图

    Fig. 1.  Structure diagram of AlGaN/GaN HEMT device

    图 2  中子辐照前后AlGaN/GaN HEMT器件转移特性曲线

    Fig. 2.  Transfer characteristic curve of AlGaN/GaN HEMT device before and after irradiation.

    图 3  中子辐照前后AlGaN/GaN HEMT器件输出特性曲线

    Fig. 3.  Output characteristic curves of AlGaN/GaN HEMT devices before and after irradiation.

    图 4  中子辐照前后AlGaN/GaN HEMT器件栅特性曲线

    Fig. 4.  Gate characteristic curve of AlGaN/GaN HEMT device before and after irradiation.

    图 5  AlGaN/GaN HEMT器件辐照前与辐照后沟道电流归一化噪声功率谱密度 (a) 辐照前; (b) 辐照后

    Fig. 5.  Normalized noise power spectral density of channel current in AlGaN/GaN HEMT devices before and after irradiation: (a) Before irradiation; (b) after irradiation.

    图 6  辐照前后归一化沟道电流噪声功率谱密度与输出电流的关系

    Fig. 6.  Normalized channel current noise power spectral density versus channel in the AlGaN/GaN HEMT devices before and after irradiation.

    图 7  典型结构的AlGaN/GaN HEMT器件中噪声-缺陷源位置[20,21]

    Fig. 7.  Location of noise-defect sources in AlGaN/GaN HEMT devices with typical structure[20,21].

    图 8  肖特基二极管器件结构图 (a)剖面图; (b)俯视图

    Fig. 8.  Schottky diode device structure diagram: (a) Cross-sectional view; (b) top view.

    图 9  中子辐照前后的肖特基二极管在1 MHz时电容随偏置电压的变化

    Fig. 9.  Variation curves of capacitance with bias voltage of Schottky diode before and after neutron irradiation at 1 MHz.

    图 10  载流子浓度随深度的波动函数

    Fig. 10.  Fluctuation function of carrier concentration with depth.

    图 11  二维电子气沟道内电子转移到体缺陷示意图

    Fig. 11.  Schematic diagram of electron transfer to bulk defects in the two-dimensional electron gas channel.

    表 1  实验参数

    Table 1.  Experimental parameters.

    直流测试参数V/V
    转移特性VG = –6—2, VD = 10, VSTEP = 0.1
    输出特性VD = 0—10, VG = –4—1, VSTEP = 1.0
    栅特性VG = –10—2, VD = VS = 0
    低频噪
    声测试
    VG = –3.5—–2.0, VSTEP = 0.1,
    VD = 10, VS = 0
    下载: 导出CSV

    表 2  辐照前后噪声参数变化

    Table 2.  Noise parameter changes before and after irradiation.

    参数辐照前辐照后
    SVfb/V2·Hz–11.56 × 10–9 1.45 × 10–7
    Nit/cm–3·eV–11.78 × 1012 1.66 × 1014
    下载: 导出CSV

    表 3  实验参数设置

    Table 3.  Experimental parameters.

    直流测试参数设置: V/V, F/kHz
    转移特性VG = –6—2, VD = 10, VSTEP = 0.1
    输出特性VD = 0—10, VG = –4—1, VSTEP = 1
    栅特性VG = –10—2, VD = VS = 0
    C-V 测试VG = –6—1, VD = 0, VSTEP = 0.05
    F=10, 50, 100, 500, 1000, 2000
    下载: 导出CSV
  • [1]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [2]

    Jun B, Subramanian S 2001 IEEE Trans. Electron. Dev. 48 2250

    [3]

    Gu W P, Hao Y, Yang L A 2010 Phys. Status Solidi C 7 1991Google Scholar

    [4]

    Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M, Zanoni E 2008 IEEE Trans. Dev. 8 332

    [5]

    Zhang D X, Chen W, Luo Y H, Liu Y, Guo X Q 2018 Appl. Phys. 9 53

    [6]

    刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 物理学报 62 140703Google Scholar

    Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703Google Scholar

    [7]

    Jayarman R, Sodini C G 1989 IEEE Trans. Dev. 36 1773Google Scholar

    [8]

    Fleetwood D M, Shaneyfelt M R, Schwank J R 1994 Appl. Phys Lett. 64 1965Google Scholar

    [9]

    彭绍泉, 杜磊, 何亮, 陈伟华, 庄奕琪, 包军林 2008 物理学报 57 5205Google Scholar

    Peng S Q, Du L, He L, Chen W H, Zhuang Y Q, Bao J L 2008 Acta Phys. Sin. 57 5205Google Scholar

    [10]

    刘远, 陈海波, 何玉娟 2015 物理学报 64 078501Google Scholar

    Liu Y, Chen H B, He Y J 2015 Acta Phys. Sin. 64 078501Google Scholar

    [11]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lü L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [12]

    White B D, Bataiev M, Goss S H and Brillson L J 2003 IEEE Trans.Nucl. Sci. 50 1934Google Scholar

    [13]

    Rajan S, Xing H, DenBaars S, Jena D 2004 Appl. Phys. Lett. 64 1591

    [14]

    Rashmi A, Kranti S, Haldar, Gupta R S 2002 Solid State Electron. 51 16

    [15]

    Rajan S, Xing H, DenBaars S, Jena D 2004 Appl. Phys Lett. 84 1591Google Scholar

    [16]

    Delagebeaudeuf D, Linh N T 1982 IEEE Trans. Electron. Dev. 6 955

    [17]

    Xiong H D 2004 Ph. D. Dissertation (Nashville: Vanderbilt University)

    [18]

    Scofield J H, Fleetwood D M 1991 IEEE Trans. Nucl. Sci. 38 1567Google Scholar

    [19]

    Chen Y Q, Zhang Y C, Liu Y 2018 IEEE Trans. Electron. Dev. 65 1Google Scholar

    [20]

    刘宇安 2014 博士学位论文 (西安: 西安电子科技大学)

    Liu Y A 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [21]

    Casey H C, Fountain G G, Alley R G, Keller B P 1996 Appl. Phys. Lett. 68 1850Google Scholar

    [22]

    Arulkumaran S, Egawa T, Ishikawa H 2002 Appl. Phys. Lett. 80 2186Google Scholar

    [23]

    Grove A S 1976 Physics and Technology of Semiconductor Devices (New York: JohnWiley and Sons) pp267−271

  • [1] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [2] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [3] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [6] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [7] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [8] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [9] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [10] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [11] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [12] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [13] 段宝兴, 杨银堂, Kevin J. Chen. 新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析. 物理学报, 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [14] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [15] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [16] 王冲, 全思, 张金凤, 郝跃, 冯倩, 陈军峰. AlGaN/GaN槽栅HEMT模拟与实验研究. 物理学报, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [17] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [18] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
计量
  • 文章访问数:  9137
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-06-16
  • 上网日期:  2020-10-12
  • 刊出日期:  2020-10-20

/

返回文章
返回