搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN肖特基二极管阳极后退火界面态修复技术

武鹏 李若晗 张涛 张进成 郝跃

引用本文:
Citation:

AlGaN/GaN肖特基二极管阳极后退火界面态修复技术

武鹏, 李若晗, 张涛, 张进成, 郝跃

Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment

Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue
PDF
HTML
导出引用
  • AlGaN/GaN异质结构材料在较强自发极化和压电极化的作用下, 会产生高面密度和高迁移率的二维电子气, 保障了基于该异质结构的GaN肖特基二极管器件具有高输出电流密度和低导通电阻特性. 阳极作为GaN肖特基二极管的核心结构, 对器件的开启电压、反向漏电、导通电阻、击穿电压等核心参数具有重要影响. 因此, 制 备低界面态密度肖特基结是实现高性能GaN肖特基二极管的前提. 本文基于低功函数金属钨阳极AlGaN/GaN肖特基二极管结构, 通过采用阳极后退火技术促进阳极金属与下方GaN材料反应成键, 有效抑制了阳极金-半界面的界面态密度, 经阳极后退火处理后, 器件阳极界面态密度由9.48×1015 eV–1·cm–2降低至1.77×1013 eV–1·cm–2. 得益于良好的阳极低界面态特性, 反向偏置下, 阳极隧穿路径被大幅度抑制, 器件反向漏电降低了2个数量级. 另外, 器件正向导通过程中, 载流子受界面陷阱态影响的输运机制也被抑制, 器件微分导通电阻从17.05 Ω·mm降低至12.57 Ω·mm. 实验结果表明, 阳极后退火技术可以有效抑制阳极金-半界面态密度, 大幅度提高GaN肖特基二极管的器件特性, 是制备高性能GaN肖特基二极管器件的核心关键技术.
    Owing to the high density and high mobility of two-dimensional electron gas (2DEG) induced by strong spontaneous polarization and piezoelectric polarization effect, AlGaN/GaN Schottky barrier diodes (SBDs) with high output current density and low on-resistance have proved to be a promising candidate. Anode of GaN SBD is the core structure, which affects the device performance such as turn-on voltage, reverse current, on-resistance, and breakdown voltage. Therefore, idealized Schottky junction with low interface state density is very important in achieving high-performance GaN SBD. In this work, AlGaN/GaN SBD with low work-function metal W as anode is fabricated, and the post-anode-annealing (PAA) treatment is found to be effective in promoting the bonding reaction between anode metal and GaN in the anode region. Comparing with GaN SBDs without PAA treatment, the interface state density decreases from 9.48×1015 eV–1·cm–2 to 1.77×1013 eV–1·cm–2 after PAA treatment. The reverse leakage current is reduced by two orders, which ascribes to the idealized anode interface with low interface state density. Meanwhile, the influence of interface state on carriers in the forward conduction process is also suppressed, and the differential on-resistance of the fabricated GaN SBDs decreases from 17.05 Ω·mm to 12.57 Ω·mm. It is obvious that the PAA process proves to be an effective method to suppress the interface states density at M/S interface, thus significantly improving the performance of GaN SBD, which is the key technology in fabricating the high-performance GaN device.
      通信作者: 张涛, zhangtao@xidian.edu.cn ; 张进成, jchzhang@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62104185)、国家杰出青年科学基金(批准号: 61925404)、中央高校基本科研业务费(批准号: QTZX23076)和青年人才托举工程(批准号: 2022QNRC001)资助的课题.
      Corresponding author: Zhang Tao, zhangtao@xidian.edu.cn ; Zhang Jin-Cheng, jchzhang@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104185), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61925404), the Fundamental Research Funds for the Central Universities, China (Grant No. QTZX23076), and the Young Elite Scientists Sponsorship Program by CAST, China (Grant No. 2022QNRC001).
    [1]

    Liu X K, Liu Q, Li C, Wang J F, Yu W J, Xu K, Ao J P 2017 Jpn. J. Appl. Phys. 56 026501Google Scholar

    [2]

    Bajaj S, Akyol F, Krishnamoorthy S, Zhang Y W, Rajan S 2016 Appl. Phys. Lett. 109 133508Google Scholar

    [3]

    武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar

    [4]

    崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟 2022 物理学报 71 136102Google Scholar

    Cui Y X, Ma Y Q, Shangguan S P, Kang X W, Liu P C, Han J W 2022 Acta Phys. Sin. 71 136102Google Scholar

    [5]

    陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 70 116102Google Scholar

    Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 70 116102Google Scholar

    [6]

    Nela L, Erp R V, Kampitsis G, Yildirim H K, Ma J, Matioli E 2021 IEEE T. Power Electr. 36 1269Google Scholar

    [7]

    Nela L, Kampitsis G, Ma J, Matioli E 2020 IEEE Electron Dev. Lett. 41 99Google Scholar

    [8]

    Li X D, Geens K, Guo W M, You S Z, Zhao M, Fahle D, Odnoblyudov V, Groeseneken G, Decoutere S 2019 IEEE Electron Dev. Lett. 40 1499Google Scholar

    [9]

    Bahat-Treidel E, Hilt O, Zhytnytska R, Wentzel A, Meliani C, Wurfl J, Trankle G 2012 IEEE Electron Dev. Lett. 33 357Google Scholar

    [10]

    Hsin Y M, Ke T Y, Lee G Y, Chyi J I, Chiu H C 2012 Phys. Status Solidi C 9 949Google Scholar

    [11]

    Han S W, Yang S, Li R, Wu X K, Sheng K 2019 IEEE T. Power Electr. 34 5012Google Scholar

    [12]

    Xu R, Chen P, Liu M H, Zhou J, Li Y M, Cheng K, Liu B, Chen D J, Xie Z L, Zhang R, Zheng Y D 2021 IEEE Electron Dev. Lett. 42 208Google Scholar

    [13]

    Zhang T, Zhang J C, Zhou H, Wang Y, Chen T S, Zhang K, Zhang Y C, Dang K, Bian Z K, Zhang J F, Xu S R, Duan X L, Ning J, Hao Y 2019 IEEE Electron Dev. Lett. 40 1583Google Scholar

    [14]

    Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H L G 2015 IEEE Electron Dev. Lett. 36 375Google Scholar

    [15]

    Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Dev. Lett. 37 70Google Scholar

    [16]

    Gao J N, Jin Y F, Xie B, Wen C P, Hao Y L, Shen B, Wang M J 2018 IEEE Electron Dev. Lett. 39 859Google Scholar

    [17]

    Zhang T, Zhang J C, Zhou H, Chen T S, Zhang K, Hu Z Z, Bian Z K, Dang K, Wang Y, Zhang L, Ning J, Ma P J, Hao Y 2018 IEEE Electron Dev. Lett. 39 1548Google Scholar

    [18]

    Zhang T, Wang Y, Zhang Y N, Lü Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Dev. 68 2661Google Scholar

    [19]

    Chen J B, Bian Z K, Liu Z H, Zhu D, Duan X L, Wu Y H, Jia Y Q, Ning J, Zhang J C, Hao Y 2021 J. Alloy Compd. 853 156978Google Scholar

    [20]

    Du L L, Xin Q, Xu M S, Liu Y X, Mu W X, Yan S Q, Wang X Y, Xin G M, Jia Z T, Tao X T, Song A M 2019 IEEE Electron Dev. Lett. 40 451Google Scholar

    [21]

    Bilkan Ç, Gümüş A, Altındal Ş 2015 Mater. Sci. Semicond. Process 39 484Google Scholar

  • 图 1  平面阳极结构AlGaN/GaN SBD器件截面图

    Fig. 1.  Schematic cross-sectional of AlGaN/GaN SBD with planar anode.

    图 2  PAA SBD与Ref SBD器件的正向导通特性(a)和反向漏电特性(b)

    Fig. 2.  Forward I-V characteristics (a) and reverse I-V characteristics (b) of the fabricated PAA SBD and Ref SBD.

    图 3  对数坐标下, 器件正向特性随温度的变化 (a) PAA SBD; (b) Ref SBD

    Fig. 3.  Temperature-dependent forward I-V characteristics of devices in semi-log scale: (a) PAA SBD; (b) Ref SBD.

    图 4  PAA SBD和Ref SBD器件势垒高度随温度的变化

    Fig. 4.  Extracted Schottky barrier height of the fabricated PAA SBD and Ref SBD as a function of the measured temperature.

    图 5  不同频率下器件的电容随阳极偏压的变化  (a) PAA SBD; (b) Ref SBD

    Fig. 5.  Frequency-dependent C-V curves of device: (a) PAA SBD; (b) Ref SBD.

    图 6  (a)陷阱态评估等效电路图; (b) PAA SBD和Ref SBD电导随角频率的变化

    Fig. 6.  (a) Equivalent circuit for the trap state evaluation; (b) frequency-dependent G/ω-ω curves of the fabricated PAA SBD and Ref SBD.

    图 7  不同频率下器件的电导随阳极偏压的变化 (a) PAA SBD; (b) Ref SBD

    Fig. 7.  Frequency-dependent G/ω-V curves of device: (a) PAA SBD; (b) Ref SBD.

    图 8  PAA SBD (a)和Ref SBD (b)的界面态密度随测试频率的变化

    Fig. 8.  Variation of NSS as a function of the measured frequency of (a) PAA SBD and (b) Ref SBD.

    图 9  (a) PAA SBD与Ref SBD器件击穿特性; (b)器件阳极界面陷阱漏电的能带结构示意图

    Fig. 9.  (a) Reverse breakdown characteristics of the fabricated PAA SBD and Ref SBD; (b) energy band diagram of trap induced leakage current in anode contact.

  • [1]

    Liu X K, Liu Q, Li C, Wang J F, Yu W J, Xu K, Ao J P 2017 Jpn. J. Appl. Phys. 56 026501Google Scholar

    [2]

    Bajaj S, Akyol F, Krishnamoorthy S, Zhang Y W, Rajan S 2016 Appl. Phys. Lett. 109 133508Google Scholar

    [3]

    武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar

    [4]

    崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟 2022 物理学报 71 136102Google Scholar

    Cui Y X, Ma Y Q, Shangguan S P, Kang X W, Liu P C, Han J W 2022 Acta Phys. Sin. 71 136102Google Scholar

    [5]

    陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 70 116102Google Scholar

    Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 70 116102Google Scholar

    [6]

    Nela L, Erp R V, Kampitsis G, Yildirim H K, Ma J, Matioli E 2021 IEEE T. Power Electr. 36 1269Google Scholar

    [7]

    Nela L, Kampitsis G, Ma J, Matioli E 2020 IEEE Electron Dev. Lett. 41 99Google Scholar

    [8]

    Li X D, Geens K, Guo W M, You S Z, Zhao M, Fahle D, Odnoblyudov V, Groeseneken G, Decoutere S 2019 IEEE Electron Dev. Lett. 40 1499Google Scholar

    [9]

    Bahat-Treidel E, Hilt O, Zhytnytska R, Wentzel A, Meliani C, Wurfl J, Trankle G 2012 IEEE Electron Dev. Lett. 33 357Google Scholar

    [10]

    Hsin Y M, Ke T Y, Lee G Y, Chyi J I, Chiu H C 2012 Phys. Status Solidi C 9 949Google Scholar

    [11]

    Han S W, Yang S, Li R, Wu X K, Sheng K 2019 IEEE T. Power Electr. 34 5012Google Scholar

    [12]

    Xu R, Chen P, Liu M H, Zhou J, Li Y M, Cheng K, Liu B, Chen D J, Xie Z L, Zhang R, Zheng Y D 2021 IEEE Electron Dev. Lett. 42 208Google Scholar

    [13]

    Zhang T, Zhang J C, Zhou H, Wang Y, Chen T S, Zhang K, Zhang Y C, Dang K, Bian Z K, Zhang J F, Xu S R, Duan X L, Ning J, Hao Y 2019 IEEE Electron Dev. Lett. 40 1583Google Scholar

    [14]

    Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H L G 2015 IEEE Electron Dev. Lett. 36 375Google Scholar

    [15]

    Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Dev. Lett. 37 70Google Scholar

    [16]

    Gao J N, Jin Y F, Xie B, Wen C P, Hao Y L, Shen B, Wang M J 2018 IEEE Electron Dev. Lett. 39 859Google Scholar

    [17]

    Zhang T, Zhang J C, Zhou H, Chen T S, Zhang K, Hu Z Z, Bian Z K, Dang K, Wang Y, Zhang L, Ning J, Ma P J, Hao Y 2018 IEEE Electron Dev. Lett. 39 1548Google Scholar

    [18]

    Zhang T, Wang Y, Zhang Y N, Lü Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Dev. 68 2661Google Scholar

    [19]

    Chen J B, Bian Z K, Liu Z H, Zhu D, Duan X L, Wu Y H, Jia Y Q, Ning J, Zhang J C, Hao Y 2021 J. Alloy Compd. 853 156978Google Scholar

    [20]

    Du L L, Xin Q, Xu M S, Liu Y X, Mu W X, Yan S Q, Wang X Y, Xin G M, Jia Z T, Tao X T, Song A M 2019 IEEE Electron Dev. Lett. 40 451Google Scholar

    [21]

    Bilkan Ç, Gümüş A, Altındal Ş 2015 Mater. Sci. Semicond. Process 39 484Google Scholar

  • [1] 武鹏, 朱宏宇, 吴金星, 张涛, 张进成, 郝跃. 基于湿法腐蚀凹槽阳极的低漏电高耐压AlGaN/GaN肖特基二极管. 物理学报, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [2] 武鹏, 张涛, 张进成, 郝跃. 低反向漏电自支撑衬底AlGaN/GaN肖特基二极管. 物理学报, 2022, 71(15): 158503. doi: 10.7498/aps.71.20220161
    [3] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [5] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管. 物理学报, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [7] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [8] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [9] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [10] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [11] 段宝兴, 杨银堂, Kevin J. Chen. 新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析. 物理学报, 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [12] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [13] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [14] 王冲, 全思, 张金凤, 郝跃, 冯倩, 陈军峰. AlGaN/GaN槽栅HEMT模拟与实验研究. 物理学报, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [15] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [16] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [17] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [18] 刘 杰, 郝 跃, 冯 倩, 王 冲, 张进城, 郭亮良. 基于I-V-T和C-V-T的GaN上Ni/Au肖特基接触特性研究. 物理学报, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
计量
  • 文章访问数:  2950
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-08-07
  • 上网日期:  2023-08-08
  • 刊出日期:  2023-10-05

/

返回文章
返回