-
GaN材料具有优异的电学特性,如大的禁带宽度(3.4 eV)、高击穿场强(3.3 MV/cm)和高电子迁移率(600 cm2/(Vs)).AlGaN/GaN异质结由于压电极化和自发极化效应,产生高密度(11013 cm-2)和高迁移率(2000 cm2/(Vs))的二维电子气(2DEG),在未来的功率系统中,AlGaN/GaN二极管具有极大的应用前景.二极管的开启电压和击穿电压是影响其损耗和功率处理能力的关键参数,本文提出了一种新型的具有高阻盖帽层(high-resistance-cap-layer,HRCL)的p-GaN混合阳极AlGaN/GaN二极管来优化其开启电压和击穿特性.在p-GaN/AlGaN/GaN材料结构基础上,通过自对准的氢等离子体处理技术,在沟道区域形成高阻盖帽层改善电场分布,提高击穿电压,同时在阳极区域保留p-GaN结构,用于耗尽下方的二维电子气,调控开启电压.制备的p-GaN混合阳极(p-GaN HRCL)二极管在阴阳极间距Lac为10 m时,击穿电压大于1 kV,开启电压+1.2 V.实验结果表明,p-GaN混合阳极和高阻GaN盖帽层的引入,有效改善AlGaN/GaN肖特基势垒二极管电学性能.GaN plays an important role in compound semiconductor, which exhibits excellent electrical properties such as wide band gap (3.4 eV), high breakdown field strength (3.3 MV/cm), and high electron mobility (600 cm2/(Vs)). AlGaN/GaN heterojunction produces two-dimensional electron gas (2DEG) with high density (11013 cm-2) and high electron mobility (2000 cm2/(Vs)) which are caused by strong piezoelectric and spontaneous polarization. The Si-based AlGaN/GaN devices emerge as a promising candidate for the nextgeneration switching application in power system due to 2DEG of AlGaN/GaN heterojunction. Turn-on and breakdown voltage are key parameters for diodes and they have a tradeoff between each other. These two parameters affect diode loss and power handling capability. For better properties, we propose a novel p-GaN hybrid anode AlGaN/GaN diode with high-resistance-cap-layer (HRCL) to optimize turn-on voltage and breakdown characteristics. Based on the p-GaN/AlGaN/GaN material structure, an HRCL is fabricated in the channel region by self-aligned hydrogen plasma treatment to improve the breakdown voltage. Hydrogen plasma is adopted to compensate for holes in the p-GaN to release electrons from the 2DEG channel, forming a high-resistivity area. The transmission line method tests the material after passivation, showing that its sheet resistance is 570 /□ and a contact resistance is 0.7 mm. In the HRCL p-GaN diode, negative charges can appear at the interface of HR-GaN/AlGaN due to polarization effect, which increases the vertical electric field in AlGaN and reduces the lateral electric field near the cathode in the p-GaN, compared with in the p-GaN diode without HRCL. The p-GaN in the anode region is reserved to regulate the turn-on voltage by depleting the underlying 2DEG. The p-GaN structure raises conduction band beyond the Fermi level, ensuring the reduction of 2DEG. The fabricated HRCL p-GaN diode exhibits a high breakdown voltage over 1000 V at Ileakage=110-4 A/mm with a cathode-anode distance Lac of 10 m and a turn-on voltage of +1.2 V when forward current is 1 mA/mm. These results indicate that the introduction of p-GaN hybrid anode and HRCL can enhance the electrical properties of AlGaN/GaN diode effectively. However, little attention has been paid to doping concentration in p-GaN. Study of the regulation of Mg2+ doping concentration on the turn-on voltage in p-GaN will be investigated in future to achieve a low forward turn-on voltage of the p-GaN HRCL diode.
[1] Amano H, Sawaki N, Akasaki I 1986 Appl. Phys. Lett. 48 255
[2] Chen K J, Hberlen O, Lidow A 2017 IEEE. Trans. Electron Dev. 64 779
[3] Li W Y, Zhang Z L, Fu K 2017 J. Semi-cond. 38 074001
[4] Dora Y, Chakraborty A, McCarthy L 2006 IEEE Electron Dev. Lett. 27 713
[5] Kim J, Kim C 2013 IEEE Trans. Power Electron. 28 3827
[6] Ma F, Luo A, Xu X, Xiao H 2013 IEEE Trans. Ind. Electron. 60 728
[7] Ishida H, Shibata D, Yanagihara M 2008 IEEE Electron Dev. Lett. 29 1567
[8] Ma L, Wang Y, Yu Z P 2004 Chin. J. Semi-cond. 25 1285 (in Chinese) [祃龙, 王燕, 余志平 2004 半导体学报 25 1285]
[9] Lee J G, Park B R 2013 IEEE Trans. Power Electron. 34 214
[10] Hu J, Stoffels S, Lenci S 2016 IEEE Trans. Electron Dev. 63 997
[11] Bai Z Y, Du J F 2017 Superlattices Microstruct. 111 1000
[12] Ma J, Zanuz D C 2017 IEEE Electron Dev. Lett. 39 260
[13] Lei J C, Jin W, Tang G F 2018 Electron. Lett. 51 1889
[14] Wu Y F, Guo W L, Cheng Y F 2017 Chin. J. Lumin. 38 477 (in Chinese) [吴月芳, 郭伟玲, 陈艳芳 2017 发光学报 38 477]
[15] Hao R H, Fu K, Yu G H 2016 Appl. Phys. Lett. 109 152106
[16] Hao R H, Li W Y, Fu K, Yu G H 2017 IEEE Electron Dev. Lett. 38 1087
[17] Ha M W, Lee J H, Han M K 2013 Solid-State Electron. 73 1
[18] O Seok, Han M K, Byun Y C 2015 Solid-State Electron. 103 49
[19] Gao J N, Jin Y F, Xie B 2018 IEEE Electron Dev. Lett. 38 859
[20] Cooke M 2015 Semicond. Today 10 98
[21] Kizilyalli I C, Edwards A P, Nie H 2014 IEEE Electron Dev. Lett. 35 247
[22] Kizilyalli I C, Prunty T, Aktas O 2015 IEEE Electron Dev. Lett. 36 1073
-
[1] Amano H, Sawaki N, Akasaki I 1986 Appl. Phys. Lett. 48 255
[2] Chen K J, Hberlen O, Lidow A 2017 IEEE. Trans. Electron Dev. 64 779
[3] Li W Y, Zhang Z L, Fu K 2017 J. Semi-cond. 38 074001
[4] Dora Y, Chakraborty A, McCarthy L 2006 IEEE Electron Dev. Lett. 27 713
[5] Kim J, Kim C 2013 IEEE Trans. Power Electron. 28 3827
[6] Ma F, Luo A, Xu X, Xiao H 2013 IEEE Trans. Ind. Electron. 60 728
[7] Ishida H, Shibata D, Yanagihara M 2008 IEEE Electron Dev. Lett. 29 1567
[8] Ma L, Wang Y, Yu Z P 2004 Chin. J. Semi-cond. 25 1285 (in Chinese) [祃龙, 王燕, 余志平 2004 半导体学报 25 1285]
[9] Lee J G, Park B R 2013 IEEE Trans. Power Electron. 34 214
[10] Hu J, Stoffels S, Lenci S 2016 IEEE Trans. Electron Dev. 63 997
[11] Bai Z Y, Du J F 2017 Superlattices Microstruct. 111 1000
[12] Ma J, Zanuz D C 2017 IEEE Electron Dev. Lett. 39 260
[13] Lei J C, Jin W, Tang G F 2018 Electron. Lett. 51 1889
[14] Wu Y F, Guo W L, Cheng Y F 2017 Chin. J. Lumin. 38 477 (in Chinese) [吴月芳, 郭伟玲, 陈艳芳 2017 发光学报 38 477]
[15] Hao R H, Fu K, Yu G H 2016 Appl. Phys. Lett. 109 152106
[16] Hao R H, Li W Y, Fu K, Yu G H 2017 IEEE Electron Dev. Lett. 38 1087
[17] Ha M W, Lee J H, Han M K 2013 Solid-State Electron. 73 1
[18] O Seok, Han M K, Byun Y C 2015 Solid-State Electron. 103 49
[19] Gao J N, Jin Y F, Xie B 2018 IEEE Electron Dev. Lett. 38 859
[20] Cooke M 2015 Semicond. Today 10 98
[21] Kizilyalli I C, Edwards A P, Nie H 2014 IEEE Electron Dev. Lett. 35 247
[22] Kizilyalli I C, Prunty T, Aktas O 2015 IEEE Electron Dev. Lett. 36 1073
计量
- 文章访问数: 8464
- PDF下载量: 199
- 被引次数: 0