搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析

段宝兴 杨银堂 Kevin J. Chen

引用本文:
Citation:

新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析

段宝兴, 杨银堂, Kevin J. Chen

Breakdown vovtage analysis of new AlGaN/GaN high electron mobility transistor with the partial fixed charge in Si3N4 layer

Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen
PDF
导出引用
  • 为了优化传统AlGaN/GaN high electron mobility transistors结构表面电场分布, 提高器件击穿电压和可靠性, 本文利用不影响AlGaN/GaN异质结极化效应的Si3N4钝化层电荷分布, 提出了一种Si3N4钝化层部分固定正电荷AlGaN/GaN high electron mobility transistors新结构. Si3N4钝化层中部分固定正电荷通过电场调制效应使表面电场分布中产生新的电场峰而趋于均匀. 新电场峰使得新结构栅边缘和漏端高电场有效降低, 器件击穿电压从传统结构的296 V提高到新结构的650 V, 而且可靠性改善. 通过Si3N4与AlGaN界面横、纵向电场分布, 说明了产生表面电场峰的电场调制效应, 为设计Si3N4层部分固定正电荷新结构提供了科学依据. Si3N4钝化层部分固定正电荷的补偿作用, 使沟道二维电子气浓度增加, 导通电阻减小, 输出电流提高.
    In order to optimize the surface electric field of the traditional AlGaN/GaN high electron mobility transistor and improve the breakdown voltage and reliability, a new AlGaN/GaN high electron mobility transistor is proposed with the partial fixed positive charges in the Si3N4 passivation layer in this paper. The partial fixed positive charges of the Si3N4 passivation layer do not affect the polarization effect of the AlGaN/GaN heterojunction. The surface electric field tends to the uniform distribution due to the new electric field peak formed by the partial fixed positive charges, which modulates the surface electric field by applying the electric field modulation effect. The high electric fields near the gate and drain electrode decrease due to the new electric field peak. The breakdown voltage is improved from the 296V for the traditional structure to the 650V for the new structure proposed. The reliability of the device is improved due to the uniform surface electric field. The effect of the electric field modulation is explained by the horizontal and vertical electric field distribution between the Si3N4 and AlGaN interface, which provides a scientific basis for designing the new structure with the partial fixed positive charges in the Si3N4 layer. Because of the fixed positive charge compensation, the two-dimensional electron gas concentration increases, and the on-resistance decreases. So, the output current of the new structure increases compared with that of the traditional AlGaN/GaN High Electron Mobility Transistor.
    • 基金项目: 国家自然科学基金重点项目(批准号: 61234006)和国家自然科学基金青年科学基金(批准号: 61106076, 61006052)资助的课题.
    • Funds: Project supported by the State Key Program of National Natural Science of China (Grant No. 61234006), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61106076, 61006052).
    [1]

    Chu R M, Zhou Y G, Liu J, Wang D L, Chen K J, Lau K M 2005 IEEE Transactions on Electron Devices 52 438

    [2]

    Anderson T J, Ren F, Covert L, Lin J, Pearton S J, Dalrymple T W, Bozada C, Fitch R C, Moser N, Bedford R G, Schimpf M 2006 J. Electronic Materials 35 675

    [3]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 J. Appl. Phys. 130 093529

    [4]

    Aubry R, Jacquet J C, Dessertenne B, Chartier E, Adam D, Cordier Y, Semond E, Massies J, Diforte M A, Romann A, Delage S L 2003 Eur. Phys. J. AP 22 77

    [5]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [6]

    Shreepad K, Michael S S, Grigory S 2005 Transactions on Electron Devices 52 2534

    [7]

    Wataru S, Masahiko K, Yoshiharu T 2005 IEEE Transactions on Electron Devices 52 106

    [8]

    Duan B X, Yang Y T 2012 Micro & Nano Lett. 7 9

    [9]

    Duan B X, Yang Y T 2012 Sci China Inf. Sci. 55 473

    [10]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201-1

    [11]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [12]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [13]

    Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057

    [14]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [15]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [16]

    Zhang Y F, Singh J 1999 J. Appl. Phys. 85 587

    [17]

    Marso M, Bernat J, Javorka P, Kordos P 2004 Appl. Phys. Lett. 85 2928

    [18]

    Polyakov V M, Schwierz F 2005 J. Appl. Phys. 98 023709

    [19]

    Wang W F, Derluyn J 2006 Japanese J. Appl. Phys. 45 L224

    [20]

    Parvesh G, Sujata P, Subhasis H, Mridula G, Gupta R S 2007 Solid State Electronics 51 130

    [21]

    Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [22]

    Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan S C 2001 Appl. Phys. Lett. 78 757

    [23]

    Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth 251 481

    [24]

    Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese J. Appl. Phys. 45 L220

    [25]

    Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D, Wang R 2007 Electrochemical and Solid-State Lett. 10 H46

    [26]

    Duan B X,Yang Y T, Kevin J C 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

  • [1]

    Chu R M, Zhou Y G, Liu J, Wang D L, Chen K J, Lau K M 2005 IEEE Transactions on Electron Devices 52 438

    [2]

    Anderson T J, Ren F, Covert L, Lin J, Pearton S J, Dalrymple T W, Bozada C, Fitch R C, Moser N, Bedford R G, Schimpf M 2006 J. Electronic Materials 35 675

    [3]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 J. Appl. Phys. 130 093529

    [4]

    Aubry R, Jacquet J C, Dessertenne B, Chartier E, Adam D, Cordier Y, Semond E, Massies J, Diforte M A, Romann A, Delage S L 2003 Eur. Phys. J. AP 22 77

    [5]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [6]

    Shreepad K, Michael S S, Grigory S 2005 Transactions on Electron Devices 52 2534

    [7]

    Wataru S, Masahiko K, Yoshiharu T 2005 IEEE Transactions on Electron Devices 52 106

    [8]

    Duan B X, Yang Y T 2012 Micro & Nano Lett. 7 9

    [9]

    Duan B X, Yang Y T 2012 Sci China Inf. Sci. 55 473

    [10]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201-1

    [11]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [12]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [13]

    Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057

    [14]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [15]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [16]

    Zhang Y F, Singh J 1999 J. Appl. Phys. 85 587

    [17]

    Marso M, Bernat J, Javorka P, Kordos P 2004 Appl. Phys. Lett. 85 2928

    [18]

    Polyakov V M, Schwierz F 2005 J. Appl. Phys. 98 023709

    [19]

    Wang W F, Derluyn J 2006 Japanese J. Appl. Phys. 45 L224

    [20]

    Parvesh G, Sujata P, Subhasis H, Mridula G, Gupta R S 2007 Solid State Electronics 51 130

    [21]

    Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [22]

    Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan S C 2001 Appl. Phys. Lett. 78 757

    [23]

    Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth 251 481

    [24]

    Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese J. Appl. Phys. 45 L220

    [25]

    Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D, Wang R 2007 Electrochemical and Solid-State Lett. 10 H46

    [26]

    Duan B X,Yang Y T, Kevin J C 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

  • [1] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [2] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [3] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [5] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管. 物理学报, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [6] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [7] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [8] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [9] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [10] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [11] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [12] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [13] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [15] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [16] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [17] 王冲, 全思, 张金凤, 郝跃, 冯倩, 陈军峰. AlGaN/GaN槽栅HEMT模拟与实验研究. 物理学报, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [18] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
计量
  • 文章访问数:  7959
  • PDF下载量:  965
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-21
  • 修回日期:  2012-07-10
  • 刊出日期:  2012-12-05

/

返回文章
返回