搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米晶金刚石钝化GaN基横向二极管制备与性能研究

任泽阳 宋松原 张涛 陈鹤元 李姚 张金风 李俊鹏 陈军飞 朱卫东 郝跃 张进成

引用本文:
Citation:

纳米晶金刚石钝化GaN基横向二极管制备与性能研究

任泽阳, 宋松原, 张涛, 陈鹤元, 李姚, 张金风, 李俊鹏, 陈军飞, 朱卫东, 郝跃, 张进成

A study of GaN-Based Lateral Diode with Nanocrystalline Diamond Passivation Layer

REN Zeyang, SONG Songyuan, ZHANG Tao, CHEN Heyuan, LI Yao, ZHANG Jinfeng, LI Junpeng, CHEN Junfei, ZHU Weidong, ZHANG Jincheng, HAO Yue
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高输出功率密度下的热积累问题是氮化镓基功率器件面临的关键瓶颈之一。纳米晶金刚石钝化层策略在GaN基高功率器件散热方面发挥着重要的作用。在硅基AlGaN/GaN异质结材料上制备了厚420~440nm、晶粒尺寸330~380nm的纳米晶金刚石薄膜,制备了纳米晶金刚石钝化的GaN基横向肖特基二极管器件,并对比研究了其与SiNx钝化器件的电学、热学性质。测试结果显示,在直流偏置下,有无纳米晶钝化层的二极管器件正向特性基本一致;在-20V偏置电压下,对两种器件施加2.5V脉冲电压后,纳米晶钝化二极管电流密度仅退化2.6%,而SiNx钝化器件电学特性几乎完全退化,表明纳米晶金刚石钝化二极管具有对电流崩塌现象优异的抑制能力;在变直流功率条件下对两种器件的热成像显微观测结果显示,发生热损毁时,SiNx钝化器件输出功率密度约4 W/mm,而纳米晶钝化器件则约为7.5 W/mm。本文是纳米晶金刚石钝化工艺在GaN基功率二极管散热应用的首次报道,充分证明了该策略在GaN基功率二极管方面的应用潜力。
    Thermal accumulation under high output power density is one of the key bottlenecks faced by GaN-based power devices. The nanocrystalline diamond (NCD) passivation layer strategy plays a while the existing studies are focus on GaN-based HEMT. In this study, nanocrystalline diamond films with a thickness of 380-450nm were grown on Si-based AlGaN/GaN heterostructure materials using a microwave plasma chemical vapor deposition (MPCVD) system. Consequently, lateral Schottky barrier diode devices with NCD passivation were fabricated, and their electrical and thermal properties were investigated. The results show that the DC forward characteristics of the NCD-passivated diodes are essentially the same as those of devices without NCD passivation. Moreover, dynamic voltage tests reveal that the NCD passivation layer significantly mitigates current collapse in GaN devices at high frequencies. Under a -20 V DC bias and a pulse voltage of 2.5 V, the current density degradation is only 2.6%, whereas conventional devices almost completely degrade. Thermal imaging microscopy under varying DC power levels shows that thermal failure occurs at an output power density of approximately 4 W/mm for conventional devices, while NCD-passivated devices can reach around 7.5 W/mm. We also test the electrical degradation behaviour of NCD passivated device under long-time reverse bias. This work firstly demonstrates applying nanocrystalline diamond passivation to thermal management in GaN-based power diodes, clearly shows the potential of this strategy for non-HEMT power device applications. crucial role in improving heat dissipation in high-power GaN devices, while the existing studies are focus on GaN-based HEMT. In this study, nanocrystalline diamond films with a thickness of 380-450nm were grown on Si-based AlGaN/GaN heterostructure materials using a microwave plasma chemical vapor deposition (MPCVD) system. Consequently, lateral Schottky barrier diode devices with NCD passivation were fabricated, and their electrical and thermal properties were investigated. The results show that the DC forward characteristics of the NCD-passivated diodes are essentially the same as those of devices without NCD passivation. Moreover, dynamic voltage tests reveal that the NCD passivation layer significantly mitigates current collapse in GaN devices at high frequencies. Under a -20 V DC bias and a pulse voltage of 2.5 V, the current density degradation is only 2.6%, whereas conventional devices almost completely degrade. Thermal imaging microscopy under varying DC power levels shows that thermal failure occurs at an output power density of approximately 4 W/mm for conventional devices, while NCD-passivated devices can reach around 7.5 W/mm. We also test the electrical degradation behaviour of NCD passivated device under long-time reverse bias. This work firstly demonstrates applying nanocrystalline diamond passivation to thermal management in GaN-based power diodes, clearly shows the potential of this strategy for non-HEMT power device applications.
  • [1]

    Bader S J, Lee H, Chaudhuri R, Huang S M, Hickman A, Molnar A, Xing H L G, Jena D, Then H W, Chowdhury N, Palacios T 2020 IEEE Trans. Electron Devices. 67 4010

    [2]

    Qin Y, Albano B, Spencer J, Lundh J S, Wang B, Buttay C, Tadjer M, DiMarino C, Zhang Y H 2023 J. Phys. D:Appl. Phys 56 093001

    [3]

    Minoura Y, Ohki T, Okamoto N, Sato M, Ozaki S, Yamada A, Kotani J 2022 Applied Physics Express 15 036501

    [4]

    Ding Y J, Li J Y, Hao Z L, Wang Q, Zhang H J, Peng Y, Chen M X 2024 IEEE Photonics Technology Letters 36 1005

    [5]

    Gerrer T, Pomeroy J, Yang F Y, Francis D, Carroll J, Loran B, Witkowski L, Yarborough M, Uren M J, Kuball M 2021 IEEE Trans. Electron Devices. 68 1530

    [6]

    Malakoutian M, Kasperovich A, Rich D, Woo K, Perez C, Soman R, Saraswat D, Kim J K, Noshin M, Chen M, Vaziri S, Bao X Y, Shih C C, Woon W Y, Asheghi M, Goodson K E, Liao S S, Mitra S, Chowdhury S 2023 Cell Reports Physical Science 4 101686

    [7]

    Wang Y N, Hu X F, Ge L, Liu Z H, Xu M S, Peng Y, Li B, Yang Y Q, Li S Q, Xie X J, Wang X W, Xu X G, Hu X B 2023 Crystals 13 500

    [8]

    Rossi S, Alomari M, Zhang Y, Bychikhin S, Pogany D, Weaver J M R, Kohn E 2013 Diamond Relat. Mater. 40 69

    [9]

    Matsumae T, Kurashima Y, Takagi H, Shirayanagi Y, Hiza S, Nishimura K, Higurashi E 2022 Scripta Mater. 215 114725

    [10]

    Gao R H, Wang X H, Mu F W, Li X J, Wei C, Zhou W, Shi J A, Tian Y, Xing X J, Li H Y, Huang S, Jiang Q M, Wei K, Liu X Y 2024 Journal of Alloys and Compounds 985 174075

    [11]

    Tadjer M J, Anderson T J, Ancona M G, Raad P E, Komarov P, Bai T, Gallagher J C, Koehler A D, Goorsky M S, Francis D A, Hobart K D, Kub F J 2019 IEEE Electr. Device Lett. 40 881

    [12]

    Ling B, Jing N, Cheng Z J, Dong W, Yu W B, Di W H, Lin Z J, Ran T, Hui L Z 2023 Journal of Synthetic Crystals 52 901 (in Chinese) [白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉 2023 人工晶体学报 52 901]

    [13]

    Gu Y, Zhang Y, Hua B, Ni X, Fan Q, Gu X 2021 Journal of Electronic Materials 50 4239

    [14]

    Lan F F, Liu S S, Fang S S, Wang Y M, Cheng H J 2024 Journal of Synthetic Crystals 53 913 (in Chinese) [兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟 2024 人工晶体学报 53 913]

    [15]

    Zheng Y T, Li C M, Liu J L, Wei J J, Ye H T 2021 Funct. Diamond. 1 63

    [16]

    Yang H, Ma Y, Dai Y 2021 Funct. Diamond. 1 150

    [17]

    Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy C R, Kub F J 2016 ECS Journal of Solid State Science and Technology 6 Q3036

    [18]

    Guo H, Li Y, Yu X, Zhou J, Kong Y 2022 Micromachines (Basel) 13 1486

    [19]

    Zhou X Y, Malakoutian M, Soman R, Bian Z L, Martinez R P, Chowdhury S 2022 IEEE Trans. Electron Devices. 69 6650

    [20]

    Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 098104 (in Chinese) [刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 098104]

    [21]

    Ryou J H, Choi S 2022 Nat. Electron. 5 834

    [22]

    Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Caldwell J D, Eddy C R, Kub F J, Butler J E, Pate B, Melngailis J 2012 IEEE Electr. Device Lett. 33 23

    [23]

    Meyer D J, Koehler A D, Hobart K D, Eddy C R, Feygelson T I, Anderson T J, Roussos J A, Tadjer M J, Downey B P, Katzer D S, Pate B B, Ancona M G 2014 IEEE Electr. Device Lett. 35 1013

    [24]

    Johnstone D, Doğan S, Leach J, Moon Y T, Fu Y, Hu Y, Morkoç H 2004 Appl. Phys. Lett. 85 4058

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, doi: 10.7498/aps.72.20221942
    [2] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, doi: 10.7498/aps.71.20220510
    [3] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, doi: 10.7498/aps.70.20210122
    [4] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管. 物理学报, doi: 10.7498/aps.67.20181208
    [5] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, doi: 10.7498/aps.66.158501
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, doi: 10.7498/aps.66.047801
    [7] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, doi: 10.7498/aps.64.187801
    [8] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, doi: 10.7498/aps.64.107801
    [9] 王天舒, 张瑞德, 关哲, 巴柯, 俎云霄. 忆阻元件与RLC以及二极管串并联电路的特性研究. 物理学报, doi: 10.7498/aps.63.178101
    [10] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, doi: 10.7498/aps.61.178503
    [11] 左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响. 物理学报, doi: 10.7498/aps.61.215202
    [12] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, doi: 10.7498/aps.60.078503
    [13] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, doi: 10.7498/aps.60.098107
    [14] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, doi: 10.7498/aps.59.1233
    [15] 王秀梅, 何济洲, 何弦, 肖宇玲. 非线性二极管系统构成的不可逆热机性能特征分析. 物理学报, doi: 10.7498/aps.59.4460
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, doi: 10.7498/aps.58.7189
    [17] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, doi: 10.7498/aps.57.472
    [18] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究. 物理学报, doi: 10.7498/aps.56.5754
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, doi: 10.7498/aps.55.1424
    [20] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, doi: 10.7498/aps.52.2541
计量
  • 文章访问数:  45
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-25

/

返回文章
返回