搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米晶金刚石钝化GaN基横向二极管制备与性能

任泽阳 宋松原 张涛 陈鹤元 李姚 张金风 李俊鹏 陈军飞 朱卫东 郝跃 张进成

引用本文:
Citation:

纳米晶金刚石钝化GaN基横向二极管制备与性能

任泽阳, 宋松原, 张涛, 陈鹤元, 李姚, 张金风, 李俊鹏, 陈军飞, 朱卫东, 郝跃, 张进成
cstr: 32037.14.aps.74.20250523

GaN-based lateral diode with nanocrystalline diamond passivation layer

REN Zeyang, SONG Songyuan, ZHANG Tao, CHEN Heyuan, LI Yao, ZHANG Jinfeng, LI Junpeng, CHEN Junfei, ZHU Weidong, HAO Yue, ZHANG Jincheng
cstr: 32037.14.aps.74.20250523
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高输出功率密度下的热积累问题是氮化镓基功率器件面临的关键瓶颈之一. 纳米晶金刚石钝化层策略在GaN基高功率器件散热方面发挥着重要的作用. 在硅基AlGaN/GaN异质结材料上制备了厚420—440 nm、晶粒尺寸330—380 nm的纳米晶金刚石薄膜, 制备了纳米晶金刚石钝化的GaN基横向肖特基二极管器件, 并对比研究了其与SiNx钝化器件的电学、热学性质. 测试结果显示, 在直流偏置下, 有无纳米晶钝化层的二极管器件正向特性基本一致; 在–20 V偏置电压下, 对两种器件施加2.5 V脉冲电压后, 纳米晶钝化二极管电流密度仅退化2.6%, 而SiNx钝化器件电学特性几乎完全退化, 表明纳米晶金刚石钝化二极管具有对电流崩塌现象优异的抑制能力; 在变直流功率条件下对两种器件的热成像显微观测结果显示, 发生热损毁时, SiNx钝化器件输出功率密度约4 W/mm, 而纳米晶钝化器件则约为7.5 W/mm. 本文是纳米晶金刚石钝化工艺在GaN基功率二极管散热应用的首次报道, 充分证明了该策略在GaN基功率二极管方面的应用潜力.
    Thermal accumulation under high output power density is one of the key bottlenecks faced by GaN-based power devices. The nanocrystalline diamond (NCD) passivation layer strategy plays a crucial role in improving heat dissipation in high-power GaN devices, while the existing studies focus on GaN-based HEMT. In this study, nanocrystalline diamond films with a thickness of 380–450 nm are grown on Si-based AlGaN/GaN heterostructure materials using a microwave plasma chemical vapor deposition (MPCVD) system. Consequently, lateral Schottky barrier diode devices with NCD passivation are fabricated, and their electrical and thermal properties are investigated. The results show that the DC forward characteristics of the NCD passivated diodes are essentially the same as those of devices without NCD passivation. Moreover, dynamic voltage tests indicate that the NCD passivation layer significantly mitigates current collapse in GaN devices at high frequencies. Under a –20 V DC bias and a pulse voltage of 2.5 V, the current density degradation of NCD passivated devices is only 2.6%, whereas devices without diamond passivation almost completely degrade. Thermal imaging microscopy under varying DC power levels shows that thermal failure occurs at an output power density of approximately 4 W/mm for conventional devices, while NCD passivated devices can reach around 7.5 W/mm. The electrical degradation behaviour of NCD passivated device is also tested under long-time reverse bias. This work demonstrates for the first time the application of nanocrystalline diamond passivation to thermal management of GaN-based power diodes, and clearly demonstrates the potential of this strategy in non-HEMT power device applications.
      通信作者: 张涛, zhangtao@xidian.edu.cn ; 张进成, jchzhang@xidian.edu.cn
    • 基金项目: 山东省重点研发计划(批准号: 2022CXGC020306)、国家自然科学基金(批准号: 62127812, 62374122, 62134006, 62204193, 62421005)、中国博士后科学基金(批准号: 2021TQ0256)、中央高校基本科研业务费(批准号: XJSJ24054, YJSJ24020)、安徽省重点研发项目(批准号: 2023a05020006)和合肥综合性国家科学中心资助的课题.
      Corresponding author: ZHANG Tao, zhangtao@xidian.edu.cn ; ZHANG Jincheng, jchzhang@xidian.edu.cn
    • Funds: Project supported by the Key Research and Development Program of Shandong Province, China (Grant No. 2022CXGC020306), the National Natural Science Foundation of China (Grant Nos. 62127812, 62374122, 62134006, 62204193, 62421005), the China Postdoctoral Science Foundation (Grant No. 2021TQ0256), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. XJSJ24054, YJSJ24020), the Key Research and Development Program of Anhui Province, China (Grant No. 2023a05020006), and the Hefei Comprehensive National Science Center, China.
    [1]

    Bader S J, Lee H, Chaudhuri R, Huang S M, Hickman A, Molnar A, Xing H L G, Jena D, Then H W, Chowdhury N, Palacios T 2020 IEEE Trans. Electron Devices 67 4010Google Scholar

    [2]

    Qin Y, Albano B, Spencer J, Lundh J S, Wang B, Buttay C, Tadjer M, DiMarino C, Zhang Y H 2023 J. Phys. D: Appl. Phys 56 093001Google Scholar

    [3]

    Minoura Y, Ohki T, Okamoto N, Sato M, Ozaki S, Yamada A, Kotani J 2022 Appl. Phys. Express 15 036501Google Scholar

    [4]

    Ding Y J, Li J Y, Hao Z L, Wang Q, Zhang H J, Peng Y, Chen M X 2024 IEEE Photonics Technol. Lett. 36 1005Google Scholar

    [5]

    Gerrer T, Pomeroy J, Yang F Y, Francis D, Carroll J, Loran B, Witkowski L, Yarborough M, Uren M J, Kuball M 2021 IEEE Trans. Electron Devices 68 1530Google Scholar

    [6]

    Malakoutian M, Kasperovich A, Rich D, Woo K, Perez C, Soman R, Saraswat D, Kim J K, Noshin M, Chen M, Vaziri S, Bao X Y, Shih C C, Woon W Y, Asheghi M, Goodson K E, Liao S S, Mitra S, Chowdhury S 2023 Cell Rep. Phys. Sci. 4 101686Google Scholar

    [7]

    Wang Y N, Hu X F, Ge L, Liu Z H, Xu M S, Peng Y, Li B, Yang Y Q, Li S Q, Xie X J, Wang X W, Xu X G, Hu X B 2023 Crystals 13 500Google Scholar

    [8]

    Rossi S, Alomari M, Zhang Y, Bychikhin S, Pogany D, Weaver J M R, Kohn E 2013 Diamond Relat. Mater. 40 69Google Scholar

    [9]

    Matsumae T, Kurashima Y, Takagi H, Shirayanagi Y, Hiza S, Nishimura K, Higurashi E 2022 Scr. Mater. 215 114725Google Scholar

    [10]

    Gao R H, Wang X H, Mu F W, Li X J, Wei C, Zhou W, Shi J A, Tian Y, Xing X J, Li H Y, Huang S, Jiang Q M, Wei K, Liu X Y 2024 J. Alloys Compd. 985 174075Google Scholar

    [11]

    Tadjer M J, Anderson T J, Ancona M G, Raad P E, Komarov P, Bai T, Gallagher J C, Koehler A D, Goorsky M S, Francis D A, Hobart K D, Kub F J 2019 IEEE Electron Device Lett. 40 881Google Scholar

    [12]

    白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉 2023 人工晶体学报 52 901Google Scholar

    Bai L, Ning J, Zhang J C, Wang D, Wang B Y, Wu H D, Zhao J L, Tao R, Li Z H 2023 J. Synth. Cryst. 52 901Google Scholar

    [13]

    Gu Y, Zhang Y, Hua B, Ni X, Fan Q, Gu X 2021 J. Electron. Mater. 50 4239Google Scholar

    [14]

    兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟 2024 人工晶体学报 53 913Google Scholar

    Lan F F, Liu S S, Fang S S, Wang Y M, Cheng H J 2024 J. Synth. Cryst. 53 913Google Scholar

    [15]

    Zheng Y T, Li C M, Liu J L, Wei J J, Ye H T 2021 Funct. Diamond 1 63Google Scholar

    [16]

    Yang H, Ma Y, Dai Y 2021 Funct. Diamond 1 150Google Scholar

    [17]

    Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy C R, Kub F J 2016 ECS J. Solid State Sci. Technol. 6 Q3036Google Scholar

    [18]

    Guo H, Li Y, Yu X, Zhou J, Kong Y 2022 Micromachines (Basel) 13 1486Google Scholar

    [19]

    Zhou X Y, Malakoutian M, Soman R, Bian Z L, Martinez R P, Chowdhury S 2022 IEEE Trans. Electron Devices 69 6650Google Scholar

    [20]

    刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 098104Google Scholar

    Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 098104Google Scholar

    [21]

    Ryou J H, Choi S 2022 Nat. Electron. 5 834Google Scholar

    [22]

    Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Caldwell J D, Eddy C R, Kub F J, Butler J E, Pate B, Melngailis J 2012 IEEE Electron. Device Lett. 33 23Google Scholar

    [23]

    Meyer D J, Koehler A D, Hobart K D, Eddy C R, Feygelson T I, Anderson T J, Roussos J A, Tadjer M J, Downey B P, Katzer D S, Pate B B, Ancona M G 2014 IEEE Electron. Device Lett. 35 1013Google Scholar

    [24]

    Johnstone D, Doğan S, Leach J, Moon Y T, Fu Y, Hu Y, Morkoç H 2004 Appl. Phys. Lett. 85 4058Google Scholar

  • 图 1  Si基AlGaN/GaN异质结外延片结构

    Fig. 1.  Si-based AlGaN/GaN heterojunction epitaxial structure.

    图 2  纳米晶金刚石钝化GaN基SBD主要工艺流程示意图 (a) 材料清洗与台面隔离; (b) 与欧姆阴极制作; (c) SiNx隔离层淀积; (d) 纳米晶金刚石薄膜生长; (e) 多步刻蚀暴露阳极区域; (f) 肖特基阳极制作与阴极开孔

    Fig. 2.  Main fabrication process flow diagram of nano crystalline diamond-passivated GaN-based SBD: (a) Sample cleaning and mesa isolation; (b) ohmic cathode formation; (c) deposition of SiNx isolation layer; (d) growth of nano crystalline diamond film; (e) multi-step etching to expose the anode region; (f) fabrication of Schottky anode and cathode opening.

    图 3  纳米晶金刚石钝化AlGaN/GaN肖特基二极管(器件A) SEM显微图像

    Fig. 3.  SEM micrograph of AlGaN/GaN SBD with nano crystalline diamond passivation layer (device A).

    图 4  纳米晶金刚石薄膜SEM显微图像 (a) 截面; (b) 表面形貌

    Fig. 4.  SEM micrograph of nano crystalline diamond film: (a) Cross-section; (b) surface morphology.

    图 5  器件A和器件B静态正向特性对比 (a) 电流-电压特性; (b) 导通电阻特性

    Fig. 5.  Comparison of static forward characteristics between device A and device B: (a) I-V characteristics; (b) on-resistance characteristics.

    图 6  (a) NCD钝化SBD与常规器件反向特性对比; (b) 刻蚀完成后阳极区域SEM显微图像; (c) 刻蚀完成后阳极区域AFM显微图像

    Fig. 6.  (a) Comparison of reverse characteristics between NCD-passivated SBD and conventional device; (b) SEM micrograph of the anode region after etching; (c) AFM micrograph of the anode region after etching.

    图 7  器件A和器件B的动态正向特性对比 (a) 器件A脉冲电流-电压特性; (b) 器件B脉冲电流-电压特性; (c) 器件A动态导通电阻特性; (d) 器件B动态导通电阻特性

    Fig. 7.  Comparison of dynamic forward characteristics between device A and B: (a) Pulsed I-V characteristics of device A; (b) pulsed I-V characteristics of device B; (c) dynamic on-resistance characteristics of device A; (d) dynamic on-resistance characteristics of device B.

    图 8  器件A, B的变功率最高结温对比

    Fig. 8.  Comparison of junction temperature under varying power conditions between devices A and B.

    图 9  器件A, B的定功率热成像温度分布

    Fig. 9.  Thermal imaging temperature distribution of devices A and B under certain output power density.

    图 10  器件A, B传热仿真模拟结果

    Fig. 10.  Simulation results of heat transfer of devices A and B.

    图 11  器件A反向应力微光显微镜测试结果

    Fig. 11.  EMMI microscopy test results of device A after reverse stress applied.

  • [1]

    Bader S J, Lee H, Chaudhuri R, Huang S M, Hickman A, Molnar A, Xing H L G, Jena D, Then H W, Chowdhury N, Palacios T 2020 IEEE Trans. Electron Devices 67 4010Google Scholar

    [2]

    Qin Y, Albano B, Spencer J, Lundh J S, Wang B, Buttay C, Tadjer M, DiMarino C, Zhang Y H 2023 J. Phys. D: Appl. Phys 56 093001Google Scholar

    [3]

    Minoura Y, Ohki T, Okamoto N, Sato M, Ozaki S, Yamada A, Kotani J 2022 Appl. Phys. Express 15 036501Google Scholar

    [4]

    Ding Y J, Li J Y, Hao Z L, Wang Q, Zhang H J, Peng Y, Chen M X 2024 IEEE Photonics Technol. Lett. 36 1005Google Scholar

    [5]

    Gerrer T, Pomeroy J, Yang F Y, Francis D, Carroll J, Loran B, Witkowski L, Yarborough M, Uren M J, Kuball M 2021 IEEE Trans. Electron Devices 68 1530Google Scholar

    [6]

    Malakoutian M, Kasperovich A, Rich D, Woo K, Perez C, Soman R, Saraswat D, Kim J K, Noshin M, Chen M, Vaziri S, Bao X Y, Shih C C, Woon W Y, Asheghi M, Goodson K E, Liao S S, Mitra S, Chowdhury S 2023 Cell Rep. Phys. Sci. 4 101686Google Scholar

    [7]

    Wang Y N, Hu X F, Ge L, Liu Z H, Xu M S, Peng Y, Li B, Yang Y Q, Li S Q, Xie X J, Wang X W, Xu X G, Hu X B 2023 Crystals 13 500Google Scholar

    [8]

    Rossi S, Alomari M, Zhang Y, Bychikhin S, Pogany D, Weaver J M R, Kohn E 2013 Diamond Relat. Mater. 40 69Google Scholar

    [9]

    Matsumae T, Kurashima Y, Takagi H, Shirayanagi Y, Hiza S, Nishimura K, Higurashi E 2022 Scr. Mater. 215 114725Google Scholar

    [10]

    Gao R H, Wang X H, Mu F W, Li X J, Wei C, Zhou W, Shi J A, Tian Y, Xing X J, Li H Y, Huang S, Jiang Q M, Wei K, Liu X Y 2024 J. Alloys Compd. 985 174075Google Scholar

    [11]

    Tadjer M J, Anderson T J, Ancona M G, Raad P E, Komarov P, Bai T, Gallagher J C, Koehler A D, Goorsky M S, Francis D A, Hobart K D, Kub F J 2019 IEEE Electron Device Lett. 40 881Google Scholar

    [12]

    白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉 2023 人工晶体学报 52 901Google Scholar

    Bai L, Ning J, Zhang J C, Wang D, Wang B Y, Wu H D, Zhao J L, Tao R, Li Z H 2023 J. Synth. Cryst. 52 901Google Scholar

    [13]

    Gu Y, Zhang Y, Hua B, Ni X, Fan Q, Gu X 2021 J. Electron. Mater. 50 4239Google Scholar

    [14]

    兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟 2024 人工晶体学报 53 913Google Scholar

    Lan F F, Liu S S, Fang S S, Wang Y M, Cheng H J 2024 J. Synth. Cryst. 53 913Google Scholar

    [15]

    Zheng Y T, Li C M, Liu J L, Wei J J, Ye H T 2021 Funct. Diamond 1 63Google Scholar

    [16]

    Yang H, Ma Y, Dai Y 2021 Funct. Diamond 1 150Google Scholar

    [17]

    Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy C R, Kub F J 2016 ECS J. Solid State Sci. Technol. 6 Q3036Google Scholar

    [18]

    Guo H, Li Y, Yu X, Zhou J, Kong Y 2022 Micromachines (Basel) 13 1486Google Scholar

    [19]

    Zhou X Y, Malakoutian M, Soman R, Bian Z L, Martinez R P, Chowdhury S 2022 IEEE Trans. Electron Devices 69 6650Google Scholar

    [20]

    刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 098104Google Scholar

    Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 098104Google Scholar

    [21]

    Ryou J H, Choi S 2022 Nat. Electron. 5 834Google Scholar

    [22]

    Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Caldwell J D, Eddy C R, Kub F J, Butler J E, Pate B, Melngailis J 2012 IEEE Electron. Device Lett. 33 23Google Scholar

    [23]

    Meyer D J, Koehler A D, Hobart K D, Eddy C R, Feygelson T I, Anderson T J, Roussos J A, Tadjer M J, Downey B P, Katzer D S, Pate B B, Ancona M G 2014 IEEE Electron. Device Lett. 35 1013Google Scholar

    [24]

    Johnstone D, Doğan S, Leach J, Moon Y T, Fu Y, Hu Y, Morkoç H 2004 Appl. Phys. Lett. 85 4058Google Scholar

  • [1] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [2] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管. 物理学报, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [3] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [4] 王天舒, 张瑞德, 关哲, 巴柯, 俎云霄. 忆阻元件与RLC以及二极管串并联电路的特性研究. 物理学报, 2014, 63(17): 178101. doi: 10.7498/aps.63.178101
    [5] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [6] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [7] 陈浩然, 杨林安, 朱樟明, 林志宇, 张进成. 基于AlGaN/GaN共振隧穿二极管的退化现象的研究. 物理学报, 2013, 62(21): 217301. doi: 10.7498/aps.62.217301
    [8] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究. 物理学报, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [9] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [10] 张运炎, 范广涵, 章勇, 郑树文. 掺杂GaN间隔层对双波长发光二极管光谱调控作用的研究. 物理学报, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [11] 王秀梅, 何济洲, 何弦, 肖宇玲. 非线性二极管系统构成的不可逆热机性能特征分析. 物理学报, 2010, 59(7): 4460-4465. doi: 10.7498/aps.59.4460
    [12] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [13] 薛正群, 黄生荣, 张保平, 陈朝. 激光诱导p-GaN掺杂对发光二极管性能改善的分析. 物理学报, 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [14] 薛正群, 黄生荣, 张保平, 陈朝. GaN基白光发光二极管失效机理分析. 物理学报, 2010, 59(7): 5002-5009. doi: 10.7498/aps.59.5002
    [15] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [16] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [17] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Pr的GaN薄膜深能级的研究. 物理学报, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [18] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [19] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥. 物理学报, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [20] 罗 毅, 郭文平, 邵嘉平, 胡 卉, 韩彦军, 薛 松, 汪 莱, 孙长征, 郝智彪. GaN基蓝光发光二极管的波长稳定性研究. 物理学报, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
计量
  • 文章访问数:  506
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-22
  • 修回日期:  2025-06-30
  • 上网日期:  2025-08-25

/

返回文章
返回