-
高输出功率密度下的热积累问题是氮化镓基功率器件面临的关键瓶颈之一。纳米晶金刚石钝化层策略在GaN基高功率器件散热方面发挥着重要的作用。在硅基AlGaN/GaN异质结材料上制备了厚420~440nm、晶粒尺寸330~380nm的纳米晶金刚石薄膜,制备了纳米晶金刚石钝化的GaN基横向肖特基二极管器件,并对比研究了其与SiNx钝化器件的电学、热学性质。测试结果显示,在直流偏置下,有无纳米晶钝化层的二极管器件正向特性基本一致;在-20V偏置电压下,对两种器件施加2.5V脉冲电压后,纳米晶钝化二极管电流密度仅退化2.6%,而SiNx钝化器件电学特性几乎完全退化,表明纳米晶金刚石钝化二极管具有对电流崩塌现象优异的抑制能力;在变直流功率条件下对两种器件的热成像显微观测结果显示,发生热损毁时,SiNx钝化器件输出功率密度约4 W/mm,而纳米晶钝化器件则约为7.5 W/mm。本文是纳米晶金刚石钝化工艺在GaN基功率二极管散热应用的首次报道,充分证明了该策略在GaN基功率二极管方面的应用潜力。Thermal accumulation under high output power density is one of the key bottlenecks faced by GaN-based power devices. The nanocrystalline diamond (NCD) passivation layer strategy plays a while the existing studies are focus on GaN-based HEMT. In this study, nanocrystalline diamond films with a thickness of 380-450nm were grown on Si-based AlGaN/GaN heterostructure materials using a microwave plasma chemical vapor deposition (MPCVD) system. Consequently, lateral Schottky barrier diode devices with NCD passivation were fabricated, and their electrical and thermal properties were investigated. The results show that the DC forward characteristics of the NCD-passivated diodes are essentially the same as those of devices without NCD passivation. Moreover, dynamic voltage tests reveal that the NCD passivation layer significantly mitigates current collapse in GaN devices at high frequencies. Under a -20 V DC bias and a pulse voltage of 2.5 V, the current density degradation is only 2.6%, whereas conventional devices almost completely degrade. Thermal imaging microscopy under varying DC power levels shows that thermal failure occurs at an output power density of approximately 4 W/mm for conventional devices, while NCD-passivated devices can reach around 7.5 W/mm. We also test the electrical degradation behaviour of NCD passivated device under long-time reverse bias. This work firstly demonstrates applying nanocrystalline diamond passivation to thermal management in GaN-based power diodes, clearly shows the potential of this strategy for non-HEMT power device applications. crucial role in improving heat dissipation in high-power GaN devices, while the existing studies are focus on GaN-based HEMT. In this study, nanocrystalline diamond films with a thickness of 380-450nm were grown on Si-based AlGaN/GaN heterostructure materials using a microwave plasma chemical vapor deposition (MPCVD) system. Consequently, lateral Schottky barrier diode devices with NCD passivation were fabricated, and their electrical and thermal properties were investigated. The results show that the DC forward characteristics of the NCD-passivated diodes are essentially the same as those of devices without NCD passivation. Moreover, dynamic voltage tests reveal that the NCD passivation layer significantly mitigates current collapse in GaN devices at high frequencies. Under a -20 V DC bias and a pulse voltage of 2.5 V, the current density degradation is only 2.6%, whereas conventional devices almost completely degrade. Thermal imaging microscopy under varying DC power levels shows that thermal failure occurs at an output power density of approximately 4 W/mm for conventional devices, while NCD-passivated devices can reach around 7.5 W/mm. We also test the electrical degradation behaviour of NCD passivated device under long-time reverse bias. This work firstly demonstrates applying nanocrystalline diamond passivation to thermal management in GaN-based power diodes, clearly shows the potential of this strategy for non-HEMT power device applications.
-
Keywords:
- Nanocrystalline diamond /
- Gallium nitride /
- Diode /
- Heat dissipation
-
[1] Bader S J, Lee H, Chaudhuri R, Huang S M, Hickman A, Molnar A, Xing H L G, Jena D, Then H W, Chowdhury N, Palacios T 2020 IEEE Trans. Electron Devices. 67 4010
[2] Qin Y, Albano B, Spencer J, Lundh J S, Wang B, Buttay C, Tadjer M, DiMarino C, Zhang Y H 2023 J. Phys. D:Appl. Phys 56 093001
[3] Minoura Y, Ohki T, Okamoto N, Sato M, Ozaki S, Yamada A, Kotani J 2022 Applied Physics Express 15 036501
[4] Ding Y J, Li J Y, Hao Z L, Wang Q, Zhang H J, Peng Y, Chen M X 2024 IEEE Photonics Technology Letters 36 1005
[5] Gerrer T, Pomeroy J, Yang F Y, Francis D, Carroll J, Loran B, Witkowski L, Yarborough M, Uren M J, Kuball M 2021 IEEE Trans. Electron Devices. 68 1530
[6] Malakoutian M, Kasperovich A, Rich D, Woo K, Perez C, Soman R, Saraswat D, Kim J K, Noshin M, Chen M, Vaziri S, Bao X Y, Shih C C, Woon W Y, Asheghi M, Goodson K E, Liao S S, Mitra S, Chowdhury S 2023 Cell Reports Physical Science 4 101686
[7] Wang Y N, Hu X F, Ge L, Liu Z H, Xu M S, Peng Y, Li B, Yang Y Q, Li S Q, Xie X J, Wang X W, Xu X G, Hu X B 2023 Crystals 13 500
[8] Rossi S, Alomari M, Zhang Y, Bychikhin S, Pogany D, Weaver J M R, Kohn E 2013 Diamond Relat. Mater. 40 69
[9] Matsumae T, Kurashima Y, Takagi H, Shirayanagi Y, Hiza S, Nishimura K, Higurashi E 2022 Scripta Mater. 215 114725
[10] Gao R H, Wang X H, Mu F W, Li X J, Wei C, Zhou W, Shi J A, Tian Y, Xing X J, Li H Y, Huang S, Jiang Q M, Wei K, Liu X Y 2024 Journal of Alloys and Compounds 985 174075
[11] Tadjer M J, Anderson T J, Ancona M G, Raad P E, Komarov P, Bai T, Gallagher J C, Koehler A D, Goorsky M S, Francis D A, Hobart K D, Kub F J 2019 IEEE Electr. Device Lett. 40 881
[12] Ling B, Jing N, Cheng Z J, Dong W, Yu W B, Di W H, Lin Z J, Ran T, Hui L Z 2023 Journal of Synthetic Crystals 52 901 (in Chinese) [白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉 2023 人工晶体学报 52 901]
[13] Gu Y, Zhang Y, Hua B, Ni X, Fan Q, Gu X 2021 Journal of Electronic Materials 50 4239
[14] Lan F F, Liu S S, Fang S S, Wang Y M, Cheng H J 2024 Journal of Synthetic Crystals 53 913 (in Chinese) [兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟 2024 人工晶体学报 53 913]
[15] Zheng Y T, Li C M, Liu J L, Wei J J, Ye H T 2021 Funct. Diamond. 1 63
[16] Yang H, Ma Y, Dai Y 2021 Funct. Diamond. 1 150
[17] Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K, Feygelson T I, Pate B B, Eddy C R, Kub F J 2016 ECS Journal of Solid State Science and Technology 6 Q3036
[18] Guo H, Li Y, Yu X, Zhou J, Kong Y 2022 Micromachines (Basel) 13 1486
[19] Zhou X Y, Malakoutian M, Soman R, Bian Z L, Martinez R P, Chowdhury S 2022 IEEE Trans. Electron Devices. 69 6650
[20] Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 098104 (in Chinese) [刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 098104]
[21] Ryou J H, Choi S 2022 Nat. Electron. 5 834
[22] Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Caldwell J D, Eddy C R, Kub F J, Butler J E, Pate B, Melngailis J 2012 IEEE Electr. Device Lett. 33 23
[23] Meyer D J, Koehler A D, Hobart K D, Eddy C R, Feygelson T I, Anderson T J, Roussos J A, Tadjer M J, Downey B P, Katzer D S, Pate B B, Ancona M G 2014 IEEE Electr. Device Lett. 35 1013
[24] Johnstone D, Doğan S, Leach J, Moon Y T, Fu Y, Hu Y, Morkoç H 2004 Appl. Phys. Lett. 85 4058
计量
- 文章访问数: 45
- PDF下载量: 0
- 被引次数: 0