搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dy3+掺杂BaO-Na2O-Nb2O5基玻璃陶瓷介电与储能性能研究

陈铃 王娇 郭旭 杜欣润 刘少辉

引用本文:
Citation:

Dy3+掺杂BaO-Na2O-Nb2O5基玻璃陶瓷介电与储能性能研究

陈铃, 王娇, 郭旭, 杜欣润, 刘少辉

Improved dielectric energy storage performance of BaO-Na2O-Nb2O5 glass ceramics by various amount Dy3+ doping

Chen Ling, Wang Jiao, Guo Xu, Du Xinrun, Liu Shaohui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 兼具高功率密度与高能量密度的电介质玻璃陶瓷材料在脉冲功率器件的轻量化、小型化与集成化方面具有重要的应用前景。本研究采用高温熔融、快速冷却结合析晶工艺,成功制备了不同摩尔浓度稀土Dy3+掺杂的BaO-Na2O-Nb2O5基玻璃陶瓷,并系统探究了Dy3+掺杂对玻璃陶瓷微观结构、结晶行为及介电储能性能的影响。结果表明,Dy3+掺杂对基体玻璃陶瓷的相结构无明显影响,但适量掺杂可促进钨青铜结构Ba2NaNb5O15陶瓷相的析出,同时提高玻璃陶瓷的结晶度,进而提升其介电常数。此外,Dy3+掺杂能够有效抑制晶粒生长,增强玻璃陶瓷的耐击穿场强。当Dy3+掺杂浓度为4 mol%时,玻璃陶瓷表现出优异的介电储能性能:介电常数达97,击穿场强提升至1485 kV/cm,储能密度高达8.01 J/cm3,是未掺杂玻璃陶瓷储能性能的1.87倍。本研究为优化玻璃陶瓷材料的介电储能性能提供了重要的实验依据和技术参考,对推动高性能脉冲功率器件的发展具有重要意义。
    Dielectric glass ceramics that combine high power density and high energy density have important application value in achieving lightweight, miniaturization, and integration of pulse power devices. Compared to dielectric ceramics and polymers, dielectric glass-ceramics are composites consisting of a ceramic phase dispersed within a glass phase. Through the processes of high-temperature melting, rapid cooling, and specific-temperature crystallization, the ceramic phase becomes uniformly distributed within the dense glass matrix. This results in a composite structure characterized by low porosity, uniform grain size, and high density. Owing to the introduction of the high-dielectric-constant ceramic phase, the glass-ceramics exhibit excellent dielectric response. Furthermore, the pore-free, continuous, and highly insulating glass matrix effectively enhances the overall breakdown resistance of the material. Different molar concentrations of rare earth Dy3+ doped BaO-Na2O-Nb2O5 based glass ceramics were prepared using high-temperature melting combined with temperature-controlled crystallization process. Raw materials of glass ceramics were weighed according to the stoichiometric ratio and homogeneously mixed using a ball mill. The thoroughly mixed raw materials were placed in a high-temperature glass furnace and melted at 1550 ℃ for 2.5 hours to ensure complete fusion. The melt was then rapidly cast into a preheated metal mold to obtain bulk glasses. These glasses were annealed at 650 ℃ for 3 hours to relieve residual stresses. Subsequently, the transparent bulk glass blocks were cut into thin slices. Finally, these slices were heat-treated at 1100 ℃ for 3 hours. Upon cooling, Dy3+ doped BaO-Na2O-Nb2O5-based glass-ceramics with varying molar concentrations of the rare-earth ion were obtained. The effects of different molar concentrations of rare earth Dy3+ doping on the microstructure, crystallization behavior, and dielectric energy storage performance of BaO-Na2O-Nb2O5 based glass ceramics were systematically studied. The test results show that rare earth Dy3+ doping has almost no effect on the phase structure of BaO-Na2O-Nb2O5 based glass ceramics. Moderate rare earth Dy3+ doping can effectively promote the precipitation of Ba2NaNb5O15 ceramic phase in tungsten bronze structure, while improving the crystallinity of glass ceramics and increasing the dielectric constant of glass ceramics. In addition, rare earth Dy3+ doping also has the effect of inhibiting the growth of glass ceramic grains, which can improve the breakdown strength of BaO-Na2O-Nb2O5 based glass ceramics. When the rare earth Dy3+ doping molar concentration is 4 mol%, the dielectric constant of BaO-Na2O-Nb2O5 based glass ceramic is 97, the breakdown strength reaches 1485kV/cm, and the highest energy storage density reaches 8.01 J/cm3, which is 1.87 times that of undoped glass ceramics. This result provides experimental basis and technical reference for improving the performance of glass ceramic materials in the field of energy storage.
  • [1]

    Ahmad A, Zahra M, e Alam F, Ali S, Pervaiz M, Saeed Z, Younas U, Mushtaq M, Rajendran S, Luque R 2023 Fuel 336 126930

    [2]

    Zhu N, Liu J, Zhou J, Zhang L, Yao N, Liu X, Chen Y, Zhang J, Zhang X 2022 Adv. Electron. Mater. 8 2200670

    [3]

    Zhou J, Zhou W, Cao D, Zhang C, Peng W, Yao T, Zuo J, Cai J, Li Y 2022 J Polym. Res. 29 72

    [4]

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 43(in Chinese)[董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 物理学报 69 43]

    [5]

    Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 161(in Chinese)[杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红 2020物理学报 69 161]

    [6]

    Liu S H, Wang J, Wang F F, Wang Y 2023 Surf. Tech 52 346(in Chinese)[刘少辉, 王娇, 王菲菲, 王远 2023 表面技术 52 346]

    [7]

    Zhuo J T, Lin M H, Zhang Q Y, Huang S W 2024 Acta Phys. Sin. 73 244(in Chinese)[卓俊添, 林铭浩, 张齐艳, 黄双武 2024 物理学报 73 244]

    [8]

    Yang M, Ren W, Guo M, Shen Y 2022 Small 18 2205247

    [9]

    Wang Y, Wang H, Xu K, Wang B, Wang F, Li C, Diao C, Huang H, Zheng H 2022 Ceram. Int. 48 16114

    [10]

    Fu J, Yang M, Wang R, Cheng S, Huang X, Wang S, Li J, Li M, He J, Li Q 2022 Mater. Today Energy 29 101101

    [11]

    Zhang J, Zhang Z a, Han X, Fang R, Xu R, Zhao L 2021 Materials Rev. 35 23162

    [12]

    Zhang J, Xu R, Han X, Zhang Z, Zhao L, Cui B, Zhai C, Lei X 2021 Funct. Mater. Lett. 14 2151004

    [13]

    Wang J, Liu S H, Chen C Q, Hao H S, Zhai J W 2020 Acta Phys. Sin. 69 53(in Chinese)[王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 物理学报 69 53]

    [14]

    Wang J, Wang Q, Wang Y, Sun X, Hao H S, Liu S H 2024 J Chin. Ceramic. Soc. 52 1310(in Chinese)[王娇, 汪庆, 王远, 孙兴, 郝好山, 刘少辉 2024 硅酸盐学报 52 1310]

    [15]

    Li D, Zhou D, Wang D, Zhao W C, Guo Y, Shi Z Q 2022 Adv. Funct. Mater. 32 2111776

    [16]

    Jiang Y, Huang Y, Fan Z, Shen M, Huang H, He Y, Zhang Q 2022 Chem. Eng. J. 446 136925

    [17]

    Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D 2021 Science 373 56

    [18]

    Sun L, Shi Z, Liang L, Dong J, Pan Z, Wang H, Gao Z, Qin Y, Fan R, Wang H 2022 ACS Appl. Mater. Interfaces 14 29292

    [19]

    Jiang Y, Luo Z, Huang Y, Shen M, Huang H, Jiang S, He Y, Zhang Q 2022 J. Mater. Chem. A 10 18950

    [20]

    Prateek, Bhunia R, Sarkar A, Anand S, Garg A, Gupta R K 2021 Energy Technol. 9 2000905

    [21]

    Dong G H, Mao Y Q, Yang G M, Li Y Q, Song S F, Xu C H, Huang P, Hu N, Fu S Y 2021 ACS Appl. Energy Mater. 4 4038

    [22]

    Zha J W, Tian Y, Zheng M S, Wan B, Yang X, Chen G 2023 Mater. Today Energy 31 101217

    [23]

    Yu Y, Shao W, Liu Y, Li Y, Zhong J, Ye H, Zhen L 2023 J. Mater. Chem. A 11 5279

    [24]

    Rajabathar J R, Thankappan R, Al-Lohedan H, Al-Sigh H A 2023 J. Mater. Sci-Mater. El. 34 585

    [25]

    Peng S, Du X, Liang Z, Ma M, Guo Y, Xiong L 2023 J. Energy Storage 60 106636

    [26]

    Zhao Y Y, Xu J W, Zhou C R, Yuan C L, Li Q N, Chen G H, Wang H, Yang L 2016 Ceram. Int. 42 2221

    [27]

    Liu X, Pu Y, Li P, Wu T, Pan G 2014 J. Mater. Sci-Mater. El. 25 3044

    [28]

    Xie W Q, Bai G X, Cai Y J, Tian Y, Huang F F, Xu S Q, Zhang J J 2019 J. Alloys Compd. 788 972

    [29]

    Chen G H, Liu T Y, Yang Y, Zhang W J 2012 Adv. Mater. Res. 535 1619

    [30]

    Zheng J, Chen G H, Yuan C L, Zhou C R, Chen X, Feng Q, Li M 2015 Ceram. Int. 42 1827

    [31]

    Zhou Y, Zhang Q, Luo J, Tang Q, Du J 2012 Rare Met. 31 281

    [32]

    Wang J, Tang L, Shen B, Zhai J 2014 J. Mater. Res.29 288

    [33]

    Xue S X, Wang J W, Liu S H, Zhang W Q, Tang L J, Shen B, Zhai J W 2014 Ceram. Int. 40 7495

    [34]

    Zhang W Q, Wang J W, Xue S X, Liu S H, Shen B, Zhai J W 2014 J. Mater. Sci-Mater. El. 25 4145

    [35]

    Liu J H, Wang H T, Shen B, Zhai J W, Li P, Pan Z B 2017 J Am. Ceram. Soc. 100 506

    [36]

    Liu S, Wang J, Ding J, Hao H, Zhao L, Xia S 2019 Ceram. Int. 45 4003

  • [1] 郭云凤, 王俊贤, 王泽星, 李家茂, 陈立明. (Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]陶瓷结构与电学性能的影响. 物理学报, doi: 10.7498/aps.74.20240833
    [2] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, doi: 10.7498/aps.69.20200592
    [3] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, doi: 10.7498/aps.69.20200175
    [4] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为. 物理学报, doi: 10.7498/aps.69.20200213
    [5] 黄禹田, 王煜, 朱敏敏, 吕婷, 杨洪春, 李翔, 王秀章, 刘美风, 李少珍. (1-x)Sr3Sn2O7+xCa3Mn2O7陶瓷合成及其光电性能. 物理学报, doi: 10.7498/aps.67.20180954
    [6] 胡一明, 廖家轩, 杨函于, 王思哲, 吴孟强, 徐自强, 冯婷婷, 巩峰. 铈镁交替掺杂Ba0.6Sr0.4TiO3薄膜高调谐性能. 物理学报, doi: 10.7498/aps.65.147701
    [7] 赵学童, 廖瑞金, 李建英, 王飞鹏. 直流老化对CaCu3Ti4O12陶瓷介电性能的影响. 物理学报, doi: 10.7498/aps.64.127701
    [8] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, doi: 10.7498/aps.61.237103
    [9] 周静, 刘存金, 李儒, 陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响. 物理学报, doi: 10.7498/aps.61.067401
    [10] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生. (K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究. 物理学报, doi: 10.7498/aps.60.107704
    [11] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, doi: 10.7498/aps.59.6613
    [12] 单丹, 朱珺钏, 金灿, 陈小兵. B位等价掺杂SrBi4Ti4O15铁电材料的性能研究. 物理学报, doi: 10.7498/aps.58.7235
    [13] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究. 物理学报, doi: 10.7498/aps.58.5790
    [14] 甘棕松, 余 华, 李妍明, 王亚楠, 陈 晖, 赵丽娟. Tm3+/Yb3+共掺氟氧硅铝酸盐玻璃陶瓷蓝色上转换发光研究. 物理学报, doi: 10.7498/aps.57.5699
    [15] 卫永霞, 钱晓梅, 俞笑竹, 叶 超, 宁兆元, 梁荣庆. O2掺杂对SiCOH低k薄膜结构与电学性能的影响. 物理学报, doi: 10.7498/aps.56.1172
    [16] 曾 涛, 董显林, 毛朝梁, 梁瑞虹, 杨 洪. 孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究. 物理学报, doi: 10.7498/aps.55.3073
    [17] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, doi: 10.7498/aps.55.3711
    [18] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, doi: 10.7498/aps.54.2346
    [19] 刘鹏, 姚熹. La调节Pb(Zr,Sn,Ti)O_3反铁电陶瓷的相变与电学性质. 物理学报, doi: 10.7498/aps.51.1621
    [20] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, doi: 10.7498/aps.51.1628
计量
  • 文章访问数:  76
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-11

/

返回文章
返回