搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低反向漏电自支撑衬底AlGaN/GaN肖特基二极管

武鹏 张涛 张进成 郝跃

引用本文:
Citation:

低反向漏电自支撑衬底AlGaN/GaN肖特基二极管

武鹏, 张涛, 张进成, 郝跃

Investigation of AlGaN/GaN Schottky barrier diodes on free-standing GaN substrate with low leakage current

Wu Peng, Zhang Tao, Zhang Jin-Cheng, Hao Yue
PDF
HTML
导出引用
  • 氮化镓材料具有大的禁带宽度(3.4 eV)、高的击穿场强(3.3 MV/cm), 在高温、高压等方面有良好的应用前景. 尤其是对于铝镓氮/氮化镓异质结构材料而言, 由极化效应产生的高面密度和高迁移率二维电子气在降低器件导通电阻、提高器件工作效率方面具有极大的优势. 由于缺乏高质量、大尺寸的氮化镓单晶衬底, 常规氮化镓材料均是在蓝宝石、硅和碳化硅等异质衬底上外延而成. 较大的晶格失配和热失配导致异质外延过程中产生密度高达107—1010 cm–2的穿透位错, 使器件性能难以进一步提升. 本文采用基于自支撑氮化镓衬底的铝镓氮/氮化镓异质结构材料制备凹槽阳极结构肖特基势垒二极管, 通过对欧姆接触区域铝镓氮势垒层刻蚀深度的精确控制, 依托单步自对准凹槽欧姆接触技术解决了低位错密度自支撑氮化镓材料的低阻欧姆接触技术难题, 实现了接触电阻仅为0.37 Ω·mm的低阻欧姆接触; 通过采用慢速低损伤刻蚀技术制备阳极凹槽区域, 使器件阳极金属与氮化镓导电沟道直接接触, 实现了高达3 × 107开关比的高性能器件, 且器件开启电压仅为0.67 V, 425 K高温下, 器件反向漏电仅为1.6 × 10–7 A/mm. 实验结果表明, 基于自支撑氮化镓衬底的凹槽阳极结构铝镓氮/氮化镓肖特基势垒二极管可以有效抑制器件反向漏电, 极大地提升器件电学性能.
    Benefiting from the excellent properties of GaN with a wide bandgap of 3.4 eV as well as high critical field of 3.3 MV/cm, GaN-based devices prove to be a promising candidate in extreme conditions. Especially, high-density high-mobility two-dimensional electron gas (2DEG) induced by spontaneous piezoelectric polarization in AlGaN/GaN heterostructure enables AlGaN/GaN device to lower on-resistance (RON). However, owing to the lack of free-standing GaN substrate with large size and high quality, the epitaxis of GaN is always based on hetero-substrate such as Al2O3, Si and SiC, which shows large lattice mismatch and thermal mismatch. The large mismatch between GaN and substrate leads to high dislocation as well as high leakage current (IR) of GaN devices. In this work, high-performance AlGaN/GaN Schottky barrier diode with low IR and low turn-on voltage (VON) is fabricated on a 3-inch free-standing GaN substrate with C-doping GaN buffer layer to suppress IR. Owing to the suppressed dislocation density of the AlGaN/GaN epitaxial wafer on free-standing substrate, low Ohmic contact resistance (RC) is difficult to achieve the suppressed penetration of Ohmic metal into 2DEG channel, which is adverse to the high current density. In this work, a low RC of 0.37 Ω·mm is obtained by one-step self-aligned Ohmic process, including the etching of partial AlGaN barrier layer and lift-off of Ohmic metal. The 2DEG is formed under the effect of residual AlGaN barrier layer, and the short distance between 2DEG and Ohmic metal contributes to lowering the value of RC. The groove anode region is defined by the low damaged inductively coupled plasma process with a low etching rate of 1 nm/min, and the total depth is 35 nm, confirmed by atomic force microscope. Fully removing the AlGaN barrier layer from the anode region makes the anode metal directly contact the 2DEG channel, thereby improving the performance of the fabricated AlGaN/GaN Schottky barrier diode (SBD) with a low VON of 0.67 V, low IR of 3.6 × 10–8 A/mm, and an ION/IOFF ratio of up to 3 × 107. The values of differential RON,sp are calculated to be 0.44, 0.86, 1.59, 2.55 mΩ·cm2 for GaN SBDs with various values of LAC of 6, 10, 15, 20 μm, and the values of RON,sp determined at an anode current density of 100 mA/mm are 1.27, 2.08, 3.29, 4.63 mΩ·cm2, respectively. As the measured temperature increases from 300 to 425 K, the IR is increased only by 3 times to 1.6 × 10–7 A/mm, which shows the great potential for next-generation power electronics.
      通信作者: 张涛, zhangtao@xidian.edu.cn ; 张进成, jchzhang@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62104185)、国家杰出青年科学基金(批准号: 61925404)和中央高校基本科研业务费(批准号: JB211103)资助的课题.
      Corresponding author: Zhang Tao, zhangtao@xidian.edu.cn ; Zhang Jin-Cheng, jchzhang@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104185), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61925404), and the Fundamental Research Fund for the Central Universities, China (Grant No. JB211103).
    [1]

    Zhang T, Wang Y, Zhang Y N, Lv Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Devices 68 2661Google Scholar

    [2]

    Hao R H, Li W Y, Fu K, Yu G H, Song L, Yuan J, Li J S, Deng X G, Zhang X D, Zhou Q, Fan Y M, Shi W H, Cai Y, Zhang X P, Zhang B S 2017 IEEE Electron Device Lett. 38 1567Google Scholar

    [3]

    Zhang L, Zheng Z Y, Yang S, Song W J, He J B, Chen K J 2021 IEEE Electron Device Lett. 42 22Google Scholar

    [4]

    Zhang T, Li R H, Lu J, Zhang Y N, Lv Y G, Duan X L, Xu S R, Zhang J C, Hao Y 2021 IEEE Electron Device Lett. 42 1747Google Scholar

    [5]

    Hsin Y M, Ke T Y, Lee G Y, Chyi J I, Chiu H C 2012 Phys. Status Solidi C 9 949Google Scholar

    [6]

    Nela L, Erp R V, Kampitsis G, Yildirim H K, Ma J, Matioli E 2021 IEEE Trans. Power Electron. 36 1269Google Scholar

    [7]

    Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Device Lett. 37 70Google Scholar

    [8]

    Gao J N, Wang M J, Yin R Y, Liu S F, Wen C P, Wang J Y, Wu W G, Hao Y L, Jin Y F, Shen B 2017 IEEE Electron Device Lett. 38 1425Google Scholar

    [9]

    Hu J, Stoffels S, Lenci S, Bakeroot B, Jaeger B D, Hove M V, Ronchi N, Venegas R, Liang H, Zhao M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Devices 63 997Google Scholar

    [10]

    Li X D, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J, Groeseneken G, Decoutere S 2017 IEEE Electron Device Lett. 38 918Google Scholar

    [11]

    Ma J, Matioli E 2018 Appl. Phys. Lett. 112 052101Google Scholar

    [12]

    Zhang T, Lv Y G, Li R H, Zhang Y N, Zhang Y C, Li X D, Zhang J C, Hao Y 2021 IEEE Electron Device Lett. 42 477Google Scholar

    [13]

    Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Device Lett. 36 660Google Scholar

    [14]

    Bahat-Treidel E, Hilt O, Zhytnytska R, Wentzel A, Meliani C, Wurfl J, Trankle G 2012 IEEE Electron Device Lett. 33 357Google Scholar

    [15]

    Lee J G, Park B R, Cho C H, Seo K S, Cha H Y 2013 IEEE Electron Device Lett. 34 214Google Scholar

    [16]

    Xiao M, Ma Y W, Cheng K, Liu K, Xie A, Beam E, Cao Y, Zhang Y H 2020 IEEE Electron Device Lett. 41 1177Google Scholar

    [17]

    Wang T T, Wang X, He Y, Jia M, Ye Q, Xu Y, Zhang Y H, Li Y, Bai L H, Ma X H, Hao Y 2021 IEEE Trans. Electron Devices 68 2867Google Scholar

    [18]

    Ma J, Santoruvo G, Tandon P, Matioli E 2016 IEEE Trans. Electron Devices 63 3614Google Scholar

    [19]

    Gao J N, Jin Y F, Xie B, Wen C P, Hao Y L, Shen B, Wang M J 2018 IEEE Electron Device Lett. 39 859Google Scholar

    [20]

    Zhang T, Zhang Y N, Zhang J C, Li X D, Lv Y G, Hao Y 2021 IEEE Electron Device Lett. 42 304Google Scholar

    [21]

    Fu H Q, Fu K, Alugubelli S R, Cheng C Y, Huang X Q, Chen H, Yang T H, Yang C, Zhou J G, Montes J, Deng X G, Qi X, Goodnick S M, Ponce F A, Zhao Y J 2020 IEEE Electron Device Lett. 41 127Google Scholar

    [22]

    Kizilyalli I C, Edwards A P, Nie H, Disney D, Bour D 2013 IEEE Trans. Electron Devices 60 3067Google Scholar

    [23]

    Lin W, Wang M J, Yin R Y, Wei J, Wen C P, Xie B, Hao Y L, Shen B 2021 IEEE Electron Device Lett. 42 1124Google Scholar

    [24]

    Liu X K, Gu H, Li K L, Guo L C, Zhu D L, Lu Y M, Wang J F, Kuo H C, Liu Z H, Liu W J, Chen L, Fang J P, Ang K W, Xu K, Ao J P 2017 AIP Adv. 7 095305Google Scholar

    [25]

    Chu J Y, Wang Q, Jiang L J, Feng C, Li W, Liu H X, Xiao H L, Wang X L 2021 J. Electron Mater. 50 2630Google Scholar

    [26]

    Alshahed M, Heuken L, Alomari M, Cora I, Toth L, Pecz B, Wachter C, Bergunde T, Burghartz J N 2018 IEEE Trans. Electron Devices 65 2939Google Scholar

    [27]

    Gao J N, Jin Y F, Hao Y L, Xie B, Wen C P, Shen B, Wang M J 2018 IEEE Trans. Electron Devices 65 1728Google Scholar

    [28]

    Wu J Y, Lei S Q, Cheng W C, Sokolovskij R, Wang Q, Xia G R, Yu H Y 2019 J. Vac. Sci. Technol. A 37 060401Google Scholar

    [29]

    Zhang T, Zhang J C, Zhou H, Chen T S, Zhang K, Hu Z Z, Bian Z K, Dang K, Wang Y, Zhang L, Ning J, Ma P J, Hao Y 2018 IEEE Electron Device Lett. 39 1548Google Scholar

    [30]

    Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H G 2015 IEEE Electron Device Lett. 36 375Google Scholar

    [31]

    Chen J B, Bian Z K, Liu Z H, Zhu D, Duan X L, Wu Y H, Jia Y Q, Ning J, Zhang J C, Hao Y 2021 J. Alloys Compd. 853 156978Google Scholar

    [32]

    Toumi S, Ferhat-Hamida A, Boussouar L, Sellai A, Ouennoughi A, Ryssel H, 2009 Microelectron. Eng. 86 303Google Scholar

  • 图 1  自支撑衬底凹槽阳极结构AlGaN/GaN SBD器件截面图

    Fig. 1.  Schematic cross-sectional of AlGaN/GaN SBD with groove anode on free-standing GaN substrate.

    图 2  器件凹槽阳极深度

    Fig. 2.  Depth of the groove anode.

    图 3  测试电阻与传输线模型电极间距的线性拟合

    Fig. 3.  Linear fitting of the measured resistance versus the TLM metal pad gap.

    图 4  自支撑氮化镓衬底凹槽阳极结构AlGaN/GaN SBD的正反向I-V曲线

    Fig. 4.  Forward and reverse I-V curve of the fabricated AlGaN/GaN SBD with groove anode on free-standing GaN substrate.

    图 5  不同衬底结构AlGaN/GaN SBD开启电压与反向漏电的对应关系

    Fig. 5.  Benchmarking the turn-on voltage and reverse current of AlGaN/GaN SBDs with various substrate.

    图 6  (a)线性坐标和(b)对数坐标下不同阴阳极间距AlGaN/GaN SBDs正向I-V特性

    Fig. 6.  Forward I-V characteristics of the fabricated AlGaN/GaN SBDs with various LAC in (a) linear-scale and (b) semi-log scale.

    图 7  半对数坐标下自支撑氮化镓衬底AGaN/GaN SBD正反向I-V特性随温度的变化关系

    Fig. 7.  Temperature-dependent forward and reverse I-V characteristics of AlGaN/GaN SBD on free-standing GaN substrate in semi-log scale.

    图 8  AlGaN/GaN SBD理想因子及肖特基势垒高度随温度的变化关系

    Fig. 8.  Extracted Schottky barrier height and ideality factor of AlGaN/GaN SBD as a function of the measured temperature.

  • [1]

    Zhang T, Wang Y, Zhang Y N, Lv Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Devices 68 2661Google Scholar

    [2]

    Hao R H, Li W Y, Fu K, Yu G H, Song L, Yuan J, Li J S, Deng X G, Zhang X D, Zhou Q, Fan Y M, Shi W H, Cai Y, Zhang X P, Zhang B S 2017 IEEE Electron Device Lett. 38 1567Google Scholar

    [3]

    Zhang L, Zheng Z Y, Yang S, Song W J, He J B, Chen K J 2021 IEEE Electron Device Lett. 42 22Google Scholar

    [4]

    Zhang T, Li R H, Lu J, Zhang Y N, Lv Y G, Duan X L, Xu S R, Zhang J C, Hao Y 2021 IEEE Electron Device Lett. 42 1747Google Scholar

    [5]

    Hsin Y M, Ke T Y, Lee G Y, Chyi J I, Chiu H C 2012 Phys. Status Solidi C 9 949Google Scholar

    [6]

    Nela L, Erp R V, Kampitsis G, Yildirim H K, Ma J, Matioli E 2021 IEEE Trans. Power Electron. 36 1269Google Scholar

    [7]

    Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Device Lett. 37 70Google Scholar

    [8]

    Gao J N, Wang M J, Yin R Y, Liu S F, Wen C P, Wang J Y, Wu W G, Hao Y L, Jin Y F, Shen B 2017 IEEE Electron Device Lett. 38 1425Google Scholar

    [9]

    Hu J, Stoffels S, Lenci S, Bakeroot B, Jaeger B D, Hove M V, Ronchi N, Venegas R, Liang H, Zhao M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Devices 63 997Google Scholar

    [10]

    Li X D, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J, Groeseneken G, Decoutere S 2017 IEEE Electron Device Lett. 38 918Google Scholar

    [11]

    Ma J, Matioli E 2018 Appl. Phys. Lett. 112 052101Google Scholar

    [12]

    Zhang T, Lv Y G, Li R H, Zhang Y N, Zhang Y C, Li X D, Zhang J C, Hao Y 2021 IEEE Electron Device Lett. 42 477Google Scholar

    [13]

    Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Device Lett. 36 660Google Scholar

    [14]

    Bahat-Treidel E, Hilt O, Zhytnytska R, Wentzel A, Meliani C, Wurfl J, Trankle G 2012 IEEE Electron Device Lett. 33 357Google Scholar

    [15]

    Lee J G, Park B R, Cho C H, Seo K S, Cha H Y 2013 IEEE Electron Device Lett. 34 214Google Scholar

    [16]

    Xiao M, Ma Y W, Cheng K, Liu K, Xie A, Beam E, Cao Y, Zhang Y H 2020 IEEE Electron Device Lett. 41 1177Google Scholar

    [17]

    Wang T T, Wang X, He Y, Jia M, Ye Q, Xu Y, Zhang Y H, Li Y, Bai L H, Ma X H, Hao Y 2021 IEEE Trans. Electron Devices 68 2867Google Scholar

    [18]

    Ma J, Santoruvo G, Tandon P, Matioli E 2016 IEEE Trans. Electron Devices 63 3614Google Scholar

    [19]

    Gao J N, Jin Y F, Xie B, Wen C P, Hao Y L, Shen B, Wang M J 2018 IEEE Electron Device Lett. 39 859Google Scholar

    [20]

    Zhang T, Zhang Y N, Zhang J C, Li X D, Lv Y G, Hao Y 2021 IEEE Electron Device Lett. 42 304Google Scholar

    [21]

    Fu H Q, Fu K, Alugubelli S R, Cheng C Y, Huang X Q, Chen H, Yang T H, Yang C, Zhou J G, Montes J, Deng X G, Qi X, Goodnick S M, Ponce F A, Zhao Y J 2020 IEEE Electron Device Lett. 41 127Google Scholar

    [22]

    Kizilyalli I C, Edwards A P, Nie H, Disney D, Bour D 2013 IEEE Trans. Electron Devices 60 3067Google Scholar

    [23]

    Lin W, Wang M J, Yin R Y, Wei J, Wen C P, Xie B, Hao Y L, Shen B 2021 IEEE Electron Device Lett. 42 1124Google Scholar

    [24]

    Liu X K, Gu H, Li K L, Guo L C, Zhu D L, Lu Y M, Wang J F, Kuo H C, Liu Z H, Liu W J, Chen L, Fang J P, Ang K W, Xu K, Ao J P 2017 AIP Adv. 7 095305Google Scholar

    [25]

    Chu J Y, Wang Q, Jiang L J, Feng C, Li W, Liu H X, Xiao H L, Wang X L 2021 J. Electron Mater. 50 2630Google Scholar

    [26]

    Alshahed M, Heuken L, Alomari M, Cora I, Toth L, Pecz B, Wachter C, Bergunde T, Burghartz J N 2018 IEEE Trans. Electron Devices 65 2939Google Scholar

    [27]

    Gao J N, Jin Y F, Hao Y L, Xie B, Wen C P, Shen B, Wang M J 2018 IEEE Trans. Electron Devices 65 1728Google Scholar

    [28]

    Wu J Y, Lei S Q, Cheng W C, Sokolovskij R, Wang Q, Xia G R, Yu H Y 2019 J. Vac. Sci. Technol. A 37 060401Google Scholar

    [29]

    Zhang T, Zhang J C, Zhou H, Chen T S, Zhang K, Hu Z Z, Bian Z K, Dang K, Wang Y, Zhang L, Ning J, Ma P J, Hao Y 2018 IEEE Electron Device Lett. 39 1548Google Scholar

    [30]

    Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H G 2015 IEEE Electron Device Lett. 36 375Google Scholar

    [31]

    Chen J B, Bian Z K, Liu Z H, Zhu D, Duan X L, Wu Y H, Jia Y Q, Ning J, Zhang J C, Hao Y 2021 J. Alloys Compd. 853 156978Google Scholar

    [32]

    Toumi S, Ferhat-Hamida A, Boussouar L, Sellai A, Ouennoughi A, Ryssel H, 2009 Microelectron. Eng. 86 303Google Scholar

  • [1] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [2] 武鹏, 朱宏宇, 吴金星, 张涛, 张进成, 郝跃. 基于湿法腐蚀凹槽阳极的低漏电高耐压AlGaN/GaN肖特基二极管. 物理学报, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计. 物理学报, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [5] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [6] 彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云. 重离子辐照导致的SiC肖特基势垒二极管损伤机理. 物理学报, 2022, 71(17): 176101. doi: 10.7498/aps.71.20220628
    [7] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [8] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [9] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211917
    [10] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [11] 朱彦旭, 宋会会, 王岳华, 李赉龙, 石栋. 氮化镓基感光栅极高电子迁移率晶体管器件设计与制备. 物理学报, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
    [12] 刘宇安, 庄奕琪, 杜磊, 苏亚慧. 氮化镓基蓝光发光二极管伽马辐照的1/f噪声表征. 物理学报, 2013, 62(14): 140703. doi: 10.7498/aps.62.140703
    [13] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [14] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [15] 刘文宝, 赵德刚, 江德生, 刘宗顺, 朱建军, 张书明, 杨辉. 高阻氮化镓外延层的异常光吸收. 物理学报, 2010, 59(11): 8048-8051. doi: 10.7498/aps.59.8048
    [16] 贾璐, 谢二庆, 潘孝军, 张振兴. 溅射制备非晶氮化镓薄膜的光学性能. 物理学报, 2009, 58(5): 3377-3382. doi: 10.7498/aps.58.3377
    [17] 赵 纯, 张勤远, 陈东丹, 姜中宏. 激光二极管抽运下铥/镱共掺碲镓酸盐玻璃光谱特性研究. 物理学报, 2007, 56(7): 4194-4199. doi: 10.7498/aps.56.4194
    [18] 张剑铭, 邹德恕, 刘思南, 徐 晨, 沈光地. 新型全方位反射铝镓铟磷薄膜发光二极管. 物理学报, 2007, 56(5): 2905-2909. doi: 10.7498/aps.56.2905
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 李宏伟, 王太宏. InAs量子点在肖特基势垒二极管输运特性中的影响. 物理学报, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
计量
  • 文章访问数:  5958
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-22
  • 修回日期:  2022-02-16
  • 上网日期:  2022-07-25
  • 刊出日期:  2022-08-05

/

返回文章
返回