-
准垂直GaN肖特基势垒二极管(SBD)因其低成本和高电流传输能力而备受关注. 但其主要问题在于无法很好地估计器件的反向特性, 从而影响二极管的设计. 本文考虑了GaN材料的缺陷以及多种漏电机制, 建立了复合漏电模型, 对准垂直GaN SBD的特性进行了模拟, 仿真结果与实验结果吻合. 基于此所提模型设计出具有高击穿电压的阶梯型场板结构准垂直GaN SBD. 根据漏电流、温度和电场在反向电压下的相关性, 分析了漏电机制和器件耐压特性, 设计的阶梯型场板结构准垂直GaN SBD的Baliga优值BFOM达到73.81 MW/cm2.Quasi-vertical GaN barrier Schottky diodes have attracted much attention due to their low cost and high current transfer capability. The main problem is that the reverse characteristics of the devices may not be well estimated, which affects the design of the diodes. In this paper, the defects of GaN materials and the leakage related tunneling mechanisms accompanied with other mechanisms are considered. Based on the established composite device models, the reverse leakage current is simulated which is well consistent with the recent experimental result. With the assistance of the proposed models, several field plate structures are discussed and simulated to obtain a quasi-vertical GaN barrier Schottky diode with high breakdown voltage. The major leakage mechanisms are also analyzed according to the relation among leakage current, temperature and electric field at various reverse voltages. High BFOM up to 73.81 MW/cm2 is achieved by adopting the proposed stepped field plate structure.
[1] Lee F C, Li Q 2013 IEEE Trans. Power Electron. 28 4127Google Scholar
[2] Zhang Y, Sun M, Liu Z, Piedra D, Lee H S, Gao F, Fujishima T, Palacios T 2013 IEEE Trans. Electron. Devices 60 2224Google Scholar
[3] Oka T 2019 Jpn. J. Appl. Phys. 58 Sb0805Google Scholar
[4] Li Z D, Chow T P 2013 IEEE Trans. Electron. Devices 60 3230Google Scholar
[5] Kizilyalli I C, Edwards A P, Nie H, Bui-Quang P, Disney D, Bour D 2014 IEEE Electron. Dev. Lett. 35 654Google Scholar
[6] Saitoh Y, Sumiyoshi K, Okada M, et al. 2010 Appl. Phys. Express 3 081001Google Scholar
[7] Bouzid F, Pezzimenti F, Dehimi L, Megherbi M L, Della Corte F G 2017 Jpn. J. Appl. Phys. 56 094301Google Scholar
[8] Lukasiak L, Jasinski J, Jakubowski A 2016 12th Conference on Electron Technology (ELTE) Wisla, Poland, September. 11–14, 2016 10175
[9] Bian Z, Zhang T, Zhang J, Zhao S, Zhou H, Xue J, Duan X, Zhang Y, Chen J, Dang K, Ning J, Hao Y 2019 Appl. Phys. Express 12 084004Google Scholar
[10] Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T, Nakamura T 2015 IEEE Electron. Dev. Lett. 36 1180Google Scholar
[11] Nomoto K, Hu Z, Song B, Zhu M, et al. 2015 International Electron Devices Meeting (IEDM) Washington DC, USA, December 7–9, 2015 p9
[12] Tanaka N, Hasegawa K, Yasunishi K, Murakami N, Oka T 2015 Appl. Phys. Express 8 071001Google Scholar
[13] Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar
[14] Santi E, Peng K, Mantooth H A, Hudgins J L 2015 IEEE Trans. Electron Devices 62 434Google Scholar
[15] Kumar M, Bhat T N, Roul B, Rajpalke M K, Kalghatgi A T, Krupanidhi S B 2012 Mater. Res. Bull. 47 1306Google Scholar
[16] Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett. 108 062103Google Scholar
[17] Yu L S, Liu Q Z, Xing Q J, Qiao D J, Lau S S, Redwing J 1998 J. Appl. Phys. 84 2099Google Scholar
[18] Ozbek A M, Baliga B J 2011 Solid State Electron 62 1Google Scholar
[19] Ieong M, Solomon P M, Laux S E, Wong H S P, Chidambarrao D 1998 International Electron Devices Meeting (IEDM) San Francisco, Ca, December 6–9, 1998 p733
[20] Lei Y, Lu H, Cao D, Chen D, Zhang R, Zheng Y 2013 Solid State Electron 82 63Google Scholar
[21] Albrecht J D, Wang R P, Ruden P P, Farahmand M, Brennan K F 1998 J. Appl. Phys. 83 4777Google Scholar
[22] Gignac L M, Parrill T M, Chandrashekhar G V 1995 Thin Solid Films 261 59Google Scholar
[23] Chevtchenko S A, Reshchikov M A, Fan Q, Ni X, Moon Y T, Baski A A, Morkoc H 2007 J. Appl. Phys. 101 113709Google Scholar
[24] Fujita S, Ohishi T, Toyoshima H, Sasaki A 1985 J. Appl. Phys. 57 426Google Scholar
[25] Vargheese K D, Rao G M 2001 J. Vac. Sci. Technol. A 19 2122Google Scholar
[26] Lei Y, Shi H, Lu H, Chen D, Zhang R, Zheng Y 2013 J. Semicond. 34 054007Google Scholar
[27] Tomer D, Rajput S, Hudy L J, Li C H, Li L 2015 Appl. Phys. Lett. 106 173510Google Scholar
[28] Lenzlinger M, Snow E H 1968 IEEE Trans. Electron Devices ED15 686
[29] Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, Hao Y 2018 Superlattices Microstruct. 119 212Google Scholar
[30] Dang G T, Zhang A P, Mshewa M M, Ren F, Chyi J I, Lee C M, Chuo C C, Chi G C, Han J, Chu S N G, Wilson R G, Cao X A, Pearton S J 2000 J. Vac. Sci. Technol. A 18 1135Google Scholar
[31] Zhu T G, Lambert D J H, Shelton B S, Wong M M, Chowdhury U, Dupuis R D 2000 Appl. Phys. Lett. 77 2918Google Scholar
[32] Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol. 27 085015Google Scholar
[33] Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y, Ao J P 2014 IEEE J. Electron Devices Soc. 2 168Google Scholar
[34] Gupta C, Enatsu Y, Gupta G, Keller S, Mishra U K 2016 Phys. Status Solidi A 213 878Google Scholar
[35] Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattices Microst. 125 295Google Scholar
-
图 1 准垂直GaN SBD关键仿真模型 (a) SBT模型; (b) NT模型; (c) 准垂直GaN SBD的仿真和文献[9]提取的反向J-V实验测试曲线比较, 插图给出了仿真的器件结构
Fig. 1. Key simulation model of quasi-vertical GaN SBDs: (a) SBT model; (b) NT model; (c) simulated and related experimental reverse J-V curves of the quasi-vertical GaN SBD schottky diode with the same structure as Ref. [9], the inset shows the simulated devicestructure.
图 3 (a) 不同场板终端结构的准垂直GaN SBD的反向J-V特性曲线; (b) 阶梯型场板结构的几何参数与击穿电压的关系曲线(插图展示了阶梯型场板的结构示意图)
Fig. 3. (a) Reverse J-V curves of the quasi-vertical GaN SBDs with various FP structures; (b) breakdown voltage of the stepped FP structure versus its geometric parameters, the inset shows the schematic diagram and geometric parameters of the stepped FP.
图 4 不同场板终端结构的准垂直GaN SBD的电场分布图 (a) 无场板结构; (b) 平面型场板结构; (c) 接触型场板结构; (d) 阶梯型场板结构; (e) 不同场板终端结构GaN SBD的n–GaN漂移层电场分布曲线
Fig. 4. Electric field distribution diagrams of the quasi-vertical GaN SBDs with various FP structures: (a) Without FP; (b) with plane FP; (c) with contacted FP; (d) with stepped FP; (e) electric field distribution curves of n–GaN layers for different FP structures.
图 5 线性依赖关系图 (a) PFE机制对应的ln(I/E)与E 1/2和SBT机制对应的ln(I/T 2)与E 1/2; (b) 高反向电压–580—–330 V时, FNT机制对应的ln(I/E 2)与–1/E; 在低电场及反向电压小于–300 V下, 热电子发射机制对应的 (c) ln I与E1/2和(d) lnI与1000/T关系; 在中等电场强度及反向电压–300— –120 V下, VRH机制对应的 (e) lnJ与 E, (f) lnJ与T –5/4关系(对应的温度范围为200—400 K)
Fig. 5. Plots of (a) ln(I/E) versus E 1/2 for PFE and ln(I/T 2) versus E 1/2 for SBT; (b) ln(I/E 2) versus –1/E for FNT under high reverse voltages from –580 V to –330 V; (c) ln I versus E 1/2 for thermal emission under small reverse voltages of lower than –300 V; (d) temperature (200—400 K) dependent plot of ln I versus 1000/T; (e) lnJ versus E and (f) lnJ versus T-5/4 (200–400 K) for VRH under medium high reverse voltages from –300 V to –120 V.
表 1 GaN SBD漏电模型及应用范围
Table 1. Summary of GaN SBD leakage current simulation models.
模型种类 物理模型 应用范围 状态模型 能带变窄模型 不限 不完全电离模型 较高掺杂 隧穿模型 陷阱辅助隧穿模型 缺陷相关材料 非局域隧穿模型 较高电场 肖特基隧穿模型 不限 复合模型 Auger复合模型 不限 SRH复合模型 不限
迁移率模型Albrecht 模型 较低电场 GaN饱和迁移率模型 较高电场 平行电场迁移率模型 不限 电离模型 Selberherr电离模型 不限 表 2 准垂直型GaN SBD多级阶梯型场板结构的主要电学参数
Table 2. Key electrical parameters of quasi-vertical GaN SBDs with multi-stepped FP.
阶梯型场板结构 击穿电压/V 开启电压/V 导通电阻/(mΩ·cm2) BFOM/ (MW·cm–2) 0阶场板 552.4 0.42 4.4 69.35 1阶场板 582.7 0.42 4.6 73.81 2阶场板 584.2 0.42 5.1 66.92 3阶场板 585.1 0.43 5.8 59.02 4阶场板 586.4 0.44 6.5 52.90 -
[1] Lee F C, Li Q 2013 IEEE Trans. Power Electron. 28 4127Google Scholar
[2] Zhang Y, Sun M, Liu Z, Piedra D, Lee H S, Gao F, Fujishima T, Palacios T 2013 IEEE Trans. Electron. Devices 60 2224Google Scholar
[3] Oka T 2019 Jpn. J. Appl. Phys. 58 Sb0805Google Scholar
[4] Li Z D, Chow T P 2013 IEEE Trans. Electron. Devices 60 3230Google Scholar
[5] Kizilyalli I C, Edwards A P, Nie H, Bui-Quang P, Disney D, Bour D 2014 IEEE Electron. Dev. Lett. 35 654Google Scholar
[6] Saitoh Y, Sumiyoshi K, Okada M, et al. 2010 Appl. Phys. Express 3 081001Google Scholar
[7] Bouzid F, Pezzimenti F, Dehimi L, Megherbi M L, Della Corte F G 2017 Jpn. J. Appl. Phys. 56 094301Google Scholar
[8] Lukasiak L, Jasinski J, Jakubowski A 2016 12th Conference on Electron Technology (ELTE) Wisla, Poland, September. 11–14, 2016 10175
[9] Bian Z, Zhang T, Zhang J, Zhao S, Zhou H, Xue J, Duan X, Zhang Y, Chen J, Dang K, Ning J, Hao Y 2019 Appl. Phys. Express 12 084004Google Scholar
[10] Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T, Nakamura T 2015 IEEE Electron. Dev. Lett. 36 1180Google Scholar
[11] Nomoto K, Hu Z, Song B, Zhu M, et al. 2015 International Electron Devices Meeting (IEDM) Washington DC, USA, December 7–9, 2015 p9
[12] Tanaka N, Hasegawa K, Yasunishi K, Murakami N, Oka T 2015 Appl. Phys. Express 8 071001Google Scholar
[13] Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar
[14] Santi E, Peng K, Mantooth H A, Hudgins J L 2015 IEEE Trans. Electron Devices 62 434Google Scholar
[15] Kumar M, Bhat T N, Roul B, Rajpalke M K, Kalghatgi A T, Krupanidhi S B 2012 Mater. Res. Bull. 47 1306Google Scholar
[16] Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett. 108 062103Google Scholar
[17] Yu L S, Liu Q Z, Xing Q J, Qiao D J, Lau S S, Redwing J 1998 J. Appl. Phys. 84 2099Google Scholar
[18] Ozbek A M, Baliga B J 2011 Solid State Electron 62 1Google Scholar
[19] Ieong M, Solomon P M, Laux S E, Wong H S P, Chidambarrao D 1998 International Electron Devices Meeting (IEDM) San Francisco, Ca, December 6–9, 1998 p733
[20] Lei Y, Lu H, Cao D, Chen D, Zhang R, Zheng Y 2013 Solid State Electron 82 63Google Scholar
[21] Albrecht J D, Wang R P, Ruden P P, Farahmand M, Brennan K F 1998 J. Appl. Phys. 83 4777Google Scholar
[22] Gignac L M, Parrill T M, Chandrashekhar G V 1995 Thin Solid Films 261 59Google Scholar
[23] Chevtchenko S A, Reshchikov M A, Fan Q, Ni X, Moon Y T, Baski A A, Morkoc H 2007 J. Appl. Phys. 101 113709Google Scholar
[24] Fujita S, Ohishi T, Toyoshima H, Sasaki A 1985 J. Appl. Phys. 57 426Google Scholar
[25] Vargheese K D, Rao G M 2001 J. Vac. Sci. Technol. A 19 2122Google Scholar
[26] Lei Y, Shi H, Lu H, Chen D, Zhang R, Zheng Y 2013 J. Semicond. 34 054007Google Scholar
[27] Tomer D, Rajput S, Hudy L J, Li C H, Li L 2015 Appl. Phys. Lett. 106 173510Google Scholar
[28] Lenzlinger M, Snow E H 1968 IEEE Trans. Electron Devices ED15 686
[29] Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, Hao Y 2018 Superlattices Microstruct. 119 212Google Scholar
[30] Dang G T, Zhang A P, Mshewa M M, Ren F, Chyi J I, Lee C M, Chuo C C, Chi G C, Han J, Chu S N G, Wilson R G, Cao X A, Pearton S J 2000 J. Vac. Sci. Technol. A 18 1135Google Scholar
[31] Zhu T G, Lambert D J H, Shelton B S, Wong M M, Chowdhury U, Dupuis R D 2000 Appl. Phys. Lett. 77 2918Google Scholar
[32] Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol. 27 085015Google Scholar
[33] Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y, Ao J P 2014 IEEE J. Electron Devices Soc. 2 168Google Scholar
[34] Gupta C, Enatsu Y, Gupta G, Keller S, Mishra U K 2016 Phys. Status Solidi A 213 878Google Scholar
[35] Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattices Microst. 125 295Google Scholar
计量
- 文章访问数: 4906
- PDF下载量: 134
- 被引次数: 0