搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计

刘成 李明 文章 顾钊源 杨明超 刘卫华 韩传余 张勇 耿莉 郝跃

引用本文:
Citation:

复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计

刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃

Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate

Liu Cheng, Li Ming, Wen Zhang, Gu Zhao-Yuan, Yang Ming-Chao, Liu Wei-Hua, Han Chuan-Yu, Zhang Yong, Geng Li, Hao Yue
PDF
HTML
导出引用
  • 准垂直GaN肖特基势垒二极管(SBD)因其低成本和高电流传输能力而备受关注. 但其主要问题在于无法很好地估计器件的反向特性, 从而影响二极管的设计. 本文考虑了GaN材料的缺陷以及多种漏电机制, 建立了复合漏电模型, 对准垂直GaN SBD的特性进行了模拟, 仿真结果与实验结果吻合. 基于此所提模型设计出具有高击穿电压的阶梯型场板结构准垂直GaN SBD. 根据漏电流、温度和电场在反向电压下的相关性, 分析了漏电机制和器件耐压特性, 设计的阶梯型场板结构准垂直GaN SBD的Baliga优值BFOM达到73.81 MW/cm2.
    Quasi-vertical GaN barrier Schottky diodes have attracted much attention due to their low cost and high current transfer capability. The main problem is that the reverse characteristics of the devices may not be well estimated, which affects the design of the diodes. In this paper, the defects of GaN materials and the leakage related tunneling mechanisms accompanied with other mechanisms are considered. Based on the established composite device models, the reverse leakage current is simulated which is well consistent with the recent experimental result. With the assistance of the proposed models, several field plate structures are discussed and simulated to obtain a quasi-vertical GaN barrier Schottky diode with high breakdown voltage. The major leakage mechanisms are also analyzed according to the relation among leakage current, temperature and electric field at various reverse voltages. High BFOM up to 73.81 MW/cm2 is achieved by adopting the proposed stepped field plate structure.
      通信作者: 耿莉, gengli@mail.xjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFB0404102)资助的课题.
      Corresponding author: Geng Li, gengli@mail.xjtu.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFB0404102).
    [1]

    Lee F C, Li Q 2013 IEEE Trans. Power Electron. 28 4127Google Scholar

    [2]

    Zhang Y, Sun M, Liu Z, Piedra D, Lee H S, Gao F, Fujishima T, Palacios T 2013 IEEE Trans. Electron. Devices 60 2224Google Scholar

    [3]

    Oka T 2019 Jpn. J. Appl. Phys. 58 Sb0805Google Scholar

    [4]

    Li Z D, Chow T P 2013 IEEE Trans. Electron. Devices 60 3230Google Scholar

    [5]

    Kizilyalli I C, Edwards A P, Nie H, Bui-Quang P, Disney D, Bour D 2014 IEEE Electron. Dev. Lett. 35 654Google Scholar

    [6]

    Saitoh Y, Sumiyoshi K, Okada M, et al. 2010 Appl. Phys. Express 3 081001Google Scholar

    [7]

    Bouzid F, Pezzimenti F, Dehimi L, Megherbi M L, Della Corte F G 2017 Jpn. J. Appl. Phys. 56 094301Google Scholar

    [8]

    Lukasiak L, Jasinski J, Jakubowski A 2016 12th Conference on Electron Technology (ELTE) Wisla, Poland, September. 11–14, 2016 10175

    [9]

    Bian Z, Zhang T, Zhang J, Zhao S, Zhou H, Xue J, Duan X, Zhang Y, Chen J, Dang K, Ning J, Hao Y 2019 Appl. Phys. Express 12 084004Google Scholar

    [10]

    Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T, Nakamura T 2015 IEEE Electron. Dev. Lett. 36 1180Google Scholar

    [11]

    Nomoto K, Hu Z, Song B, Zhu M, et al. 2015 International Electron Devices Meeting (IEDM) Washington DC, USA, December 7–9, 2015 p9

    [12]

    Tanaka N, Hasegawa K, Yasunishi K, Murakami N, Oka T 2015 Appl. Phys. Express 8 071001Google Scholar

    [13]

    Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar

    [14]

    Santi E, Peng K, Mantooth H A, Hudgins J L 2015 IEEE Trans. Electron Devices 62 434Google Scholar

    [15]

    Kumar M, Bhat T N, Roul B, Rajpalke M K, Kalghatgi A T, Krupanidhi S B 2012 Mater. Res. Bull. 47 1306Google Scholar

    [16]

    Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett. 108 062103Google Scholar

    [17]

    Yu L S, Liu Q Z, Xing Q J, Qiao D J, Lau S S, Redwing J 1998 J. Appl. Phys. 84 2099Google Scholar

    [18]

    Ozbek A M, Baliga B J 2011 Solid State Electron 62 1Google Scholar

    [19]

    Ieong M, Solomon P M, Laux S E, Wong H S P, Chidambarrao D 1998 International Electron Devices Meeting (IEDM) San Francisco, Ca, December 6–9, 1998 p733

    [20]

    Lei Y, Lu H, Cao D, Chen D, Zhang R, Zheng Y 2013 Solid State Electron 82 63Google Scholar

    [21]

    Albrecht J D, Wang R P, Ruden P P, Farahmand M, Brennan K F 1998 J. Appl. Phys. 83 4777Google Scholar

    [22]

    Gignac L M, Parrill T M, Chandrashekhar G V 1995 Thin Solid Films 261 59Google Scholar

    [23]

    Chevtchenko S A, Reshchikov M A, Fan Q, Ni X, Moon Y T, Baski A A, Morkoc H 2007 J. Appl. Phys. 101 113709Google Scholar

    [24]

    Fujita S, Ohishi T, Toyoshima H, Sasaki A 1985 J. Appl. Phys. 57 426Google Scholar

    [25]

    Vargheese K D, Rao G M 2001 J. Vac. Sci. Technol. A 19 2122Google Scholar

    [26]

    Lei Y, Shi H, Lu H, Chen D, Zhang R, Zheng Y 2013 J. Semicond. 34 054007Google Scholar

    [27]

    Tomer D, Rajput S, Hudy L J, Li C H, Li L 2015 Appl. Phys. Lett. 106 173510Google Scholar

    [28]

    Lenzlinger M, Snow E H 1968 IEEE Trans. Electron Devices ED15 686

    [29]

    Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, Hao Y 2018 Superlattices Microstruct. 119 212Google Scholar

    [30]

    Dang G T, Zhang A P, Mshewa M M, Ren F, Chyi J I, Lee C M, Chuo C C, Chi G C, Han J, Chu S N G, Wilson R G, Cao X A, Pearton S J 2000 J. Vac. Sci. Technol. A 18 1135Google Scholar

    [31]

    Zhu T G, Lambert D J H, Shelton B S, Wong M M, Chowdhury U, Dupuis R D 2000 Appl. Phys. Lett. 77 2918Google Scholar

    [32]

    Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol. 27 085015Google Scholar

    [33]

    Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y, Ao J P 2014 IEEE J. Electron Devices Soc. 2 168Google Scholar

    [34]

    Gupta C, Enatsu Y, Gupta G, Keller S, Mishra U K 2016 Phys. Status Solidi A 213 878Google Scholar

    [35]

    Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattices Microst. 125 295Google Scholar

  • 图 1  准垂直GaN SBD关键仿真模型 (a) SBT模型; (b) NT模型; (c) 准垂直GaN SBD的仿真和文献[9]提取的反向J-V实验测试曲线比较, 插图给出了仿真的器件结构

    Fig. 1.  Key simulation model of quasi-vertical GaN SBDs: (a) SBT model; (b) NT model; (c) simulated and related experimental reverse J-V curves of the quasi-vertical GaN SBD schottky diode with the same structure as Ref. [9], the inset shows the simulated devicestructure.

    图 2  准垂直GaN SBD截面示意图 (a) 无场板结构; (b) 平面型场板结构; (c) 接触型场板结构; (d) 阶梯型场板结构

    Fig. 2.  Cross-sections of different quasi-vertical GaN SBDs: (a) Without FP; (b) with plane FP; (c) with contacted FP; (d) with stepped FP.

    图 3  (a) 不同场板终端结构的准垂直GaN SBD的反向J-V特性曲线; (b) 阶梯型场板结构的几何参数与击穿电压的关系曲线(插图展示了阶梯型场板的结构示意图)

    Fig. 3.  (a) Reverse J-V curves of the quasi-vertical GaN SBDs with various FP structures; (b) breakdown voltage of the stepped FP structure versus its geometric parameters, the inset shows the schematic diagram and geometric parameters of the stepped FP.

    图 4  不同场板终端结构的准垂直GaN SBD的电场分布图 (a) 无场板结构; (b) 平面型场板结构; (c) 接触型场板结构; (d) 阶梯型场板结构; (e) 不同场板终端结构GaN SBD的nGaN漂移层电场分布曲线

    Fig. 4.  Electric field distribution diagrams of the quasi-vertical GaN SBDs with various FP structures: (a) Without FP; (b) with plane FP; (c) with contacted FP; (d) with stepped FP; (e) electric field distribution curves of nGaN layers for different FP structures.

    图 5  线性依赖关系图 (a) PFE机制对应的ln(I/E)与E 1/2和SBT机制对应的ln(I/T 2)与E 1/2; (b) 高反向电压–580—–330 V时, FNT机制对应的ln(I/E 2)与–1/E; 在低电场及反向电压小于–300 V下, 热电子发射机制对应的 (c) ln IE1/2和(d) lnI与1000/T关系; 在中等电场强度及反向电压–300— –120 V下, VRH机制对应的 (e) lnJE, (f) lnJT –5/4关系(对应的温度范围为200—400 K)

    Fig. 5.  Plots of (a) ln(I/E) versus E 1/2 for PFE and ln(I/T 2) versus E 1/2 for SBT; (b) ln(I/E 2) versus –1/E for FNT under high reverse voltages from –580 V to –330 V; (c) ln I versus E 1/2 for thermal emission under small reverse voltages of lower than –300 V; (d) temperature (200—400 K) dependent plot of ln I versus 1000/T; (e) lnJ versus E and (f) lnJ versus T-5/4 (200–400 K) for VRH under medium high reverse voltages from –300 V to –120 V.

    图 6  (a) 含有阶梯型场板终端结构GaN SBD的正向J-V特性曲线; (b) 多级阶梯型场板终端结构GaN SBD的正向J-V特性曲线

    Fig. 6.  (a) Forward J-V curve of the stepped FP structure; (b) forward J-V curves of the quasi-vertical GaN SBDs with multi-stepped FP.

    图 7  蓝宝石衬底准垂直型GaN SBD的击穿电压与导通电阻的对比图(BFOM单位为MW/cm2)

    Fig. 7.  Bench marking the break down voltage and on-resistance of quasi-vertical GaN SBDs on sapphire substrates.

    表 1  GaN SBD漏电模型及应用范围

    Table 1.  Summary of GaN SBD leakage current simulation models.

    模型种类物理模型应用范围
    状态模型能带变窄模型不限
    不完全电离模型较高掺杂
    隧穿模型陷阱辅助隧穿模型缺陷相关材料
    非局域隧穿模型较高电场
    肖特基隧穿模型不限
    复合模型Auger复合模型不限
    SRH复合模型不限

    迁移率模型
    Albrecht 模型较低电场
    GaN饱和迁移率模型较高电场
    平行电场迁移率模型不限
    电离模型Selberherr电离模型 不限
    下载: 导出CSV

    表 2  准垂直型GaN SBD多级阶梯型场板结构的主要电学参数

    Table 2.  Key electrical parameters of quasi-vertical GaN SBDs with multi-stepped FP.

    阶梯型场板结构击穿电压/V开启电压/V导通电阻/(mΩ·cm2)BFOM/ (MW·cm–2)
    0阶场板552.40.424.469.35
    1阶场板582.70.424.673.81
    2阶场板584.20.425.166.92
    3阶场板585.10.435.859.02
    4阶场板586.40.446.552.90
    下载: 导出CSV
  • [1]

    Lee F C, Li Q 2013 IEEE Trans. Power Electron. 28 4127Google Scholar

    [2]

    Zhang Y, Sun M, Liu Z, Piedra D, Lee H S, Gao F, Fujishima T, Palacios T 2013 IEEE Trans. Electron. Devices 60 2224Google Scholar

    [3]

    Oka T 2019 Jpn. J. Appl. Phys. 58 Sb0805Google Scholar

    [4]

    Li Z D, Chow T P 2013 IEEE Trans. Electron. Devices 60 3230Google Scholar

    [5]

    Kizilyalli I C, Edwards A P, Nie H, Bui-Quang P, Disney D, Bour D 2014 IEEE Electron. Dev. Lett. 35 654Google Scholar

    [6]

    Saitoh Y, Sumiyoshi K, Okada M, et al. 2010 Appl. Phys. Express 3 081001Google Scholar

    [7]

    Bouzid F, Pezzimenti F, Dehimi L, Megherbi M L, Della Corte F G 2017 Jpn. J. Appl. Phys. 56 094301Google Scholar

    [8]

    Lukasiak L, Jasinski J, Jakubowski A 2016 12th Conference on Electron Technology (ELTE) Wisla, Poland, September. 11–14, 2016 10175

    [9]

    Bian Z, Zhang T, Zhang J, Zhao S, Zhou H, Xue J, Duan X, Zhang Y, Chen J, Dang K, Ning J, Hao Y 2019 Appl. Phys. Express 12 084004Google Scholar

    [10]

    Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T, Nakamura T 2015 IEEE Electron. Dev. Lett. 36 1180Google Scholar

    [11]

    Nomoto K, Hu Z, Song B, Zhu M, et al. 2015 International Electron Devices Meeting (IEDM) Washington DC, USA, December 7–9, 2015 p9

    [12]

    Tanaka N, Hasegawa K, Yasunishi K, Murakami N, Oka T 2015 Appl. Phys. Express 8 071001Google Scholar

    [13]

    Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar

    [14]

    Santi E, Peng K, Mantooth H A, Hudgins J L 2015 IEEE Trans. Electron Devices 62 434Google Scholar

    [15]

    Kumar M, Bhat T N, Roul B, Rajpalke M K, Kalghatgi A T, Krupanidhi S B 2012 Mater. Res. Bull. 47 1306Google Scholar

    [16]

    Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett. 108 062103Google Scholar

    [17]

    Yu L S, Liu Q Z, Xing Q J, Qiao D J, Lau S S, Redwing J 1998 J. Appl. Phys. 84 2099Google Scholar

    [18]

    Ozbek A M, Baliga B J 2011 Solid State Electron 62 1Google Scholar

    [19]

    Ieong M, Solomon P M, Laux S E, Wong H S P, Chidambarrao D 1998 International Electron Devices Meeting (IEDM) San Francisco, Ca, December 6–9, 1998 p733

    [20]

    Lei Y, Lu H, Cao D, Chen D, Zhang R, Zheng Y 2013 Solid State Electron 82 63Google Scholar

    [21]

    Albrecht J D, Wang R P, Ruden P P, Farahmand M, Brennan K F 1998 J. Appl. Phys. 83 4777Google Scholar

    [22]

    Gignac L M, Parrill T M, Chandrashekhar G V 1995 Thin Solid Films 261 59Google Scholar

    [23]

    Chevtchenko S A, Reshchikov M A, Fan Q, Ni X, Moon Y T, Baski A A, Morkoc H 2007 J. Appl. Phys. 101 113709Google Scholar

    [24]

    Fujita S, Ohishi T, Toyoshima H, Sasaki A 1985 J. Appl. Phys. 57 426Google Scholar

    [25]

    Vargheese K D, Rao G M 2001 J. Vac. Sci. Technol. A 19 2122Google Scholar

    [26]

    Lei Y, Shi H, Lu H, Chen D, Zhang R, Zheng Y 2013 J. Semicond. 34 054007Google Scholar

    [27]

    Tomer D, Rajput S, Hudy L J, Li C H, Li L 2015 Appl. Phys. Lett. 106 173510Google Scholar

    [28]

    Lenzlinger M, Snow E H 1968 IEEE Trans. Electron Devices ED15 686

    [29]

    Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, Hao Y 2018 Superlattices Microstruct. 119 212Google Scholar

    [30]

    Dang G T, Zhang A P, Mshewa M M, Ren F, Chyi J I, Lee C M, Chuo C C, Chi G C, Han J, Chu S N G, Wilson R G, Cao X A, Pearton S J 2000 J. Vac. Sci. Technol. A 18 1135Google Scholar

    [31]

    Zhu T G, Lambert D J H, Shelton B S, Wong M M, Chowdhury U, Dupuis R D 2000 Appl. Phys. Lett. 77 2918Google Scholar

    [32]

    Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol. 27 085015Google Scholar

    [33]

    Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y, Ao J P 2014 IEEE J. Electron Devices Soc. 2 168Google Scholar

    [34]

    Gupta C, Enatsu Y, Gupta G, Keller S, Mishra U K 2016 Phys. Status Solidi A 213 878Google Scholar

    [35]

    Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattices Microst. 125 295Google Scholar

  • [1] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响. 物理学报, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [2] 佘彦超, 张蔚曦, 王应, 罗开武, 江小蔚. 氧空位缺陷对PbTiO3铁电薄膜漏电流的调控. 物理学报, 2018, 67(18): 187701. doi: 10.7498/aps.67.20181130
    [3] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰. Ni/Au/n-GaN肖特基二极管可导位错的电学模型. 物理学报, 2018, 67(17): 177202. doi: 10.7498/aps.67.20180762
    [4] 赵逸涵, 段宝兴, 袁嵩, 吕建梅, 杨银堂. 具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管. 物理学报, 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [5] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [6] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [7] 段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂. 阶梯氧化层新型折叠硅横向双扩散功率器件. 物理学报, 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [8] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究. 物理学报, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [9] 段宝兴, 曹震, 袁小宁, 杨银堂. 具有N型缓冲层REBULF Super Junction LDMOS. 物理学报, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [10] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构. 物理学报, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [11] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [12] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析. 物理学报, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [13] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨. 应变Si NMOSFET漏电流解析模型. 物理学报, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [14] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控. 物理学报, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [15] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [16] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [17] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能. 物理学报, 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [18] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [19] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] 卢 肖, 吴传贵, 张万里, 李言荣. 射频溅射制备的BST薄膜介电击穿研究. 物理学报, 2006, 55(5): 2513-2517. doi: 10.7498/aps.55.2513
计量
  • 文章访问数:  6069
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 修回日期:  2021-11-21
  • 上网日期:  2022-03-02
  • 刊出日期:  2022-03-05

/

返回文章
返回