搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变Si NMOSFET漏电流解析模型

周春宇 张鹤鸣 胡辉勇 庄奕琪 吕懿 王斌 李妤晨

引用本文:
Citation:

应变Si NMOSFET漏电流解析模型

周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨

Analytical modeling for drain current of strained Si NMOSFET

Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Lü Yi, Wang Bin, Li Yu-Chen
PDF
导出引用
  • 基于应变Si/SiGe器件结构,本文建立了统一的应变Si NMOSFET漏电流解析模型. 该模型采用平滑函数,实现了应变Si NMOSFET漏电流及其导数,从亚阈值区到强反型区以及从线性区到饱和区的平滑性,解决了模型的连续性问题. 同时考虑了载流子速度饱和效应和沟道长度调制效应的影响,进一步提高了模型精度. 通过将模型的仿真结果和实验结果对比分析,验证了所建模型的有效性. 该模型可为应变Si数字集成电路和模拟集成电路分析、设计提供重要参考.
    Based on the structure of strained Si/SiGe NMOSFET, a unified drain current model is presented in this paper. The model describes current characteristics from subthreshold to strong inversion as well as from the linear to the saturation operating regions with a smoothing function, and guarantees the continuities of the drain current and its derivatives.Furthermore, the model accuracy is enhanced by including carrier velocity saturation and channel length modulation effects. Comparisons between the model and the measured data show that the drain current model can describe the device characteristics well. The proposed model is useful for the design and simulation of digital and analogy circuits made of strained Si.
    • 基金项目: 教育部博士点基金(批准号:JY0300122503)、中央高校基本业务费(批准号:K5051225014,K5051225004)和陕西省自然科学基金(批准号:2010JQ8008)资助的课题.
    • Funds: Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. JY0300122503), the Fundamental Research Funds for the Central Universities of China (Grant Nos. K5051225014, K5051225004), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2010JQ8008).
    [1]

    O’Neil A G, Antoniadis D A 1996 IEEE Trans. Electron Devices 43 911

    [2]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827

    [3]

    Bindu B, Nandita D G, Amitava D G 2006 Solid-State Electronics 5 448

    [4]

    Kumar M J, Vivek V, Nawal S 2007 Proceedings of the 20th International Conference on VLSI Design Bangalore, India, January 6–10, 2007 p189

    [5]

    Qin S S, Zhang H M, Hu H Y, Qu J T, Wang G Y, Xiao Q, Shu Y 2011 Acta Phys. Sin. 60 058501 (in Chinese) [秦珊珊, 张鹤鸣, 胡辉勇, 屈江涛, 王冠宇, 肖庆, 舒钰 2011 物理学报 60 058501]

    [6]

    Jakub Q, Bogdan M 2007 Journal of Telecommunications and Information Technology 3 84

    [7]

    Qu J T, Zhang H M, Qing S S, Xu X B, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 098501 (in Chinese) [曲江涛, 张鹤鸣, 秦珊珊, 徐小波, 王晓艳, 胡辉勇 2011 物理学报 60 098501]

    [8]

    Arora N 2007 MOSFET Modeling for VLSI Simulation (Singapore: World Scientific Press) p12–68

    [9]

    Kunihiro S 2000 IEEE Trans. Electron Devices 47 2372

    [10]

    Kendall J D, Boothroyd A R 1986 IEEE Electron Devices Lett. 7 407

    [11]

    Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Su B, Wang B, Wang G Y 2013 Acta Phys. Sin. 62 077103 (in Chinese) [周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇 2013 物理学报 62 077103]

    [12]

    Yannis T, Colin M 2011 Operation and Modeling of the MOS Transistor (3rd Ed.) (New York: Oxford University Press) p600–638

    [13]

    Wang B, Zhang H M, Hu H Y, Zhang Y M, Shu B, Zhou C Y, Li Y C, L L 2013 Acta Phys. Sin. 62 057103 (in Chinese) [王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿 2013 物理学报 62 057103]

    [14]

    Wang G Y, Zhang H M, Wang X Y, Wu T F, Wang B 2011 Acta Phys. Sin. 60 077106 (in Chinese) [王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌 2011 物理学报 60 077106]

    [15]

    Cheng Y H, Jeng M C, Liu Z H, Huang J H, Chen K, Ping K K, Hu C M 1997 IEEE Trans. Electron Devices 44 280

  • [1]

    O’Neil A G, Antoniadis D A 1996 IEEE Trans. Electron Devices 43 911

    [2]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827

    [3]

    Bindu B, Nandita D G, Amitava D G 2006 Solid-State Electronics 5 448

    [4]

    Kumar M J, Vivek V, Nawal S 2007 Proceedings of the 20th International Conference on VLSI Design Bangalore, India, January 6–10, 2007 p189

    [5]

    Qin S S, Zhang H M, Hu H Y, Qu J T, Wang G Y, Xiao Q, Shu Y 2011 Acta Phys. Sin. 60 058501 (in Chinese) [秦珊珊, 张鹤鸣, 胡辉勇, 屈江涛, 王冠宇, 肖庆, 舒钰 2011 物理学报 60 058501]

    [6]

    Jakub Q, Bogdan M 2007 Journal of Telecommunications and Information Technology 3 84

    [7]

    Qu J T, Zhang H M, Qing S S, Xu X B, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 098501 (in Chinese) [曲江涛, 张鹤鸣, 秦珊珊, 徐小波, 王晓艳, 胡辉勇 2011 物理学报 60 098501]

    [8]

    Arora N 2007 MOSFET Modeling for VLSI Simulation (Singapore: World Scientific Press) p12–68

    [9]

    Kunihiro S 2000 IEEE Trans. Electron Devices 47 2372

    [10]

    Kendall J D, Boothroyd A R 1986 IEEE Electron Devices Lett. 7 407

    [11]

    Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Su B, Wang B, Wang G Y 2013 Acta Phys. Sin. 62 077103 (in Chinese) [周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇 2013 物理学报 62 077103]

    [12]

    Yannis T, Colin M 2011 Operation and Modeling of the MOS Transistor (3rd Ed.) (New York: Oxford University Press) p600–638

    [13]

    Wang B, Zhang H M, Hu H Y, Zhang Y M, Shu B, Zhou C Y, Li Y C, L L 2013 Acta Phys. Sin. 62 057103 (in Chinese) [王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿 2013 物理学报 62 057103]

    [14]

    Wang G Y, Zhang H M, Wang X Y, Wu T F, Wang B 2011 Acta Phys. Sin. 60 077106 (in Chinese) [王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌 2011 物理学报 60 077106]

    [15]

    Cheng Y H, Jeng M C, Liu Z H, Huang J H, Chen K, Ping K K, Hu C M 1997 IEEE Trans. Electron Devices 44 280

  • [1] 佘彦超, 张蔚曦, 王应, 罗开武, 江小蔚. 氧空位缺陷对PbTiO3铁电薄膜漏电流的调控. 物理学报, 2018, 67(18): 187701. doi: 10.7498/aps.67.20181130
    [2] 覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文. 同步对称双栅InGaZnO薄膜晶体管电势模型研究. 物理学报, 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [3] 张卿, 武新军. 基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型. 物理学报, 2017, 66(3): 038102. doi: 10.7498/aps.66.038102
    [4] 李世松, 张钟华, 赵伟, 黄松岭, 傅壮. 一种用保角变换求解带电Kelvin电容器边缘效应所产生静电力的解析模型. 物理学报, 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [5] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [6] 吴良海, 张骏, 范之国, 高隽. 多次散射因素影响下天空偏振光模式的解析模型. 物理学报, 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [7] 梁京辉, 张晓锋, 乔鸣忠, 夏益辉, 李耕, 陈俊全. 离散式任意充磁角度Halbach永磁电机解析模型研究. 物理学报, 2013, 62(15): 150501. doi: 10.7498/aps.62.150501
    [8] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [9] 苏丽娜, 顾晓峰, 秦华, 闫大为. 单电子晶体管电流解析模型及数值分析. 物理学报, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [10] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控. 物理学报, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [11] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型. 物理学报, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [12] 王斌, 张鹤鸣, 胡辉勇, 张玉明, 宋建军, 周春宇, 李妤晨. 异质多晶SiGe栅应变Si NMOSFET物理模型研究. 物理学报, 2013, 62(21): 218502. doi: 10.7498/aps.62.218502
    [13] 李聪, 庄奕琪, 韩茹, 张丽, 包军林. 非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型. 物理学报, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [14] 刘保军, 蔡理. 临近空间单粒子串扰的解析模型. 物理学报, 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [15] 曹磊, 刘红侠, 王冠宇. 异质栅全耗尽应变硅金属氧化物半导体模型化研究. 物理学报, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [16] 刘景旺, 杜振辉, 李金义, 齐汝宾, 徐可欣. DFB激光二极管电流-温度调谐特性的解析模型. 物理学报, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [17] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型. 物理学报, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [18] 王秀章, 刘红日. La0.3Sr0.7TiO3模板层对Pb(Zr0.5Ti0.5)O3薄膜的铁电性能增强效应的研究. 物理学报, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [19] 贾建峰, 黄 凯, 潘清涛, 李世国, 贺德衍. 溶胶-凝胶法制备MgO/(Ba0.8Sr0.2)TiO3多层薄膜及其介电和漏电特性研究. 物理学报, 2006, 55(4): 2069-2072. doi: 10.7498/aps.55.2069
    [20] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
计量
  • 文章访问数:  2985
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-05
  • 修回日期:  2013-08-23
  • 刊出日期:  2013-12-05

应变Si NMOSFET漏电流解析模型

  • 1. 西安电子科技大学微电子学院, 宽禁带半导体材料与器件重点实验室, 西安 710071
    基金项目: 教育部博士点基金(批准号:JY0300122503)、中央高校基本业务费(批准号:K5051225014,K5051225004)和陕西省自然科学基金(批准号:2010JQ8008)资助的课题.

摘要: 基于应变Si/SiGe器件结构,本文建立了统一的应变Si NMOSFET漏电流解析模型. 该模型采用平滑函数,实现了应变Si NMOSFET漏电流及其导数,从亚阈值区到强反型区以及从线性区到饱和区的平滑性,解决了模型的连续性问题. 同时考虑了载流子速度饱和效应和沟道长度调制效应的影响,进一步提高了模型精度. 通过将模型的仿真结果和实验结果对比分析,验证了所建模型的有效性. 该模型可为应变Si数字集成电路和模拟集成电路分析、设计提供重要参考.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回