搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnli相亚氧化钛的莫特相变和磁电性能的模拟计算

侯清玉 乌云 赵春旺

引用本文:
Citation:

Magnli相亚氧化钛的莫特相变和磁电性能的模拟计算

侯清玉, 乌云, 赵春旺

Simulation and calculation of the Mott phase transition and magnetroelectric performance of Magnli phase titanium suboxides

Hou Qing-Yu, Wu Yun, Zhao Chun-Wang
PDF
导出引用
  • 基于密度泛函理论框架下的第一性原理平面波超软赝势方法,构建纯的单胞与金红石型和锐钛矿型TiO1.9375超胞模型,并对模型进行了几何结构优化、能带结构分布和态密度分布的计算. 结果表明,与纯的单胞相比,金红石和锐钛矿Magnli相TiO1.9375体系体积均变大,稳定性略下降,而且都发生了莫特相变. 其中锐钛矿Magnli相亚氧化钛表现没有磁性,金红石Magnli相亚氧化钛有磁性. 锐钛矿Magnli相亚氧化钛的导电性能比金红石Magnli相亚氧化钛强. 计算结果与实验结果相一致.
    The pure and Magnli phase titanium suboxides for both rutile and anatase supercell models of TiO1.9375 were structured by using first-principles plane-wave ultrasoft pseudopotential method based on the density functional theory; the geometry optimizations, the band structures, and density of states of these models were calculated. Results show that the volumes become greater for Magnli phase titanium suboxides in both rutile and anatase; meanwhile, the stability may reduce slightly, leading to a Mott transition. The nonmagnetic property of anatase titanium suboxides, and the magnetic property of rutile titanium suboxides, as wall as the conductive property of anatase titanium suboxides are higher than rutile titanium suboxides, in agreement with the experimental results.
    • 基金项目: 国家自然科学基金(批准号:61366008,51261017)、教育部春晖计划资助项目和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), the Spring Sunshine Plan Fund of the Ministry of Education, China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Gardos M N 2000 Tribol. Lett. 8 65

    [2]

    Sun Y B, Zhang X Q, Li G K, Cheng Z H 2012 Chin. Phys. B 21 047503

    [3]

    Gusev A, Avvakumov E G, Medvedev A, Masliy A 2007 Sci. Sinter. 39 51

    [4]

    Kao W H, Patel P, Haberichter S L 1997 J. Electrochem Soc. 144 1907

    [5]

    Andersson S, Magneli A 1956 Naturwiss 43 495

    [6]

    Woydt M 2000 Tribol. Lett. 8 117

    [7]

    Smith J R, Walshf C 1998 J. Appl. Electrochem. 28 1021

    [8]

    Liborio L, Harrison N 2008 Phys. Rev. B 77 104104

    [9]

    Halley J W, Michalewicz M T, Tit N 1990 Phys. Rev. B 41 10165

    [10]

    Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 物理学报 57 438]

    [11]

    Guan D B, Mao J 2012 Acta Phys. Sin. 61 017102 (in Chinese) [管东波, 毛健 2012 物理学报 61 017102]

    [12]

    Rumaiz A K, Ali B, Ceylan A, Boggs M, Beebe T, Shah S I 2007 Solid. State. Commun. 144 334

    [13]

    Feng J, Xiao B, Zhou R, Pan W 2013 J. Appl. Phys. 113 143907

    [14]

    Tsutomu U, Tetsuya Y, Hisayoshi I, Keisuke A 2002 J. Phys. Chem. Solids 63 1909

    [15]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [16]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescuv V S 2004 J. Mat. Sci. 39 675

    [17]

    Tang H, Prasad K, Sanjinés R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042

    [18]

    Serpone N 2006 J. Phys. Chem. B 110 24287

    [19]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [20]

    Hou Q Y, Wu Y G R L, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese) [侯清玉, 乌云格日乐, 赵春旺 2013 物理学报 62 237101]

    [21]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [22]

    Hou Q Y, Zhao C W, Li J J, Wang G 2011Acta Phys. Sin. 60 047104 (in Chinese) [侯清玉, 赵春旺, 李继军, 王钢 2011 物理学报 60 047104]

    [23]

    Jhm J, Zunger A, Cohen M L 1979 J. Phys. C 12 4409

    [24]

    Xin J, Zheng Y Q, Shi E W 2007 J. Inorg. Mater 22 193 (in Chinese) [忻隽, 郑燕青, 施尔畏 2007 无机材料学报 22 193]

    [25]

    Pournami P V, Marykutty T, George K C 2012 J. Appl. Phys. 112 104308

  • [1]

    Gardos M N 2000 Tribol. Lett. 8 65

    [2]

    Sun Y B, Zhang X Q, Li G K, Cheng Z H 2012 Chin. Phys. B 21 047503

    [3]

    Gusev A, Avvakumov E G, Medvedev A, Masliy A 2007 Sci. Sinter. 39 51

    [4]

    Kao W H, Patel P, Haberichter S L 1997 J. Electrochem Soc. 144 1907

    [5]

    Andersson S, Magneli A 1956 Naturwiss 43 495

    [6]

    Woydt M 2000 Tribol. Lett. 8 117

    [7]

    Smith J R, Walshf C 1998 J. Appl. Electrochem. 28 1021

    [8]

    Liborio L, Harrison N 2008 Phys. Rev. B 77 104104

    [9]

    Halley J W, Michalewicz M T, Tit N 1990 Phys. Rev. B 41 10165

    [10]

    Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 物理学报 57 438]

    [11]

    Guan D B, Mao J 2012 Acta Phys. Sin. 61 017102 (in Chinese) [管东波, 毛健 2012 物理学报 61 017102]

    [12]

    Rumaiz A K, Ali B, Ceylan A, Boggs M, Beebe T, Shah S I 2007 Solid. State. Commun. 144 334

    [13]

    Feng J, Xiao B, Zhou R, Pan W 2013 J. Appl. Phys. 113 143907

    [14]

    Tsutomu U, Tetsuya Y, Hisayoshi I, Keisuke A 2002 J. Phys. Chem. Solids 63 1909

    [15]

    Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458

    [16]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescuv V S 2004 J. Mat. Sci. 39 675

    [17]

    Tang H, Prasad K, Sanjinés R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042

    [18]

    Serpone N 2006 J. Phys. Chem. B 110 24287

    [19]

    Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [20]

    Hou Q Y, Wu Y G R L, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese) [侯清玉, 乌云格日乐, 赵春旺 2013 物理学报 62 237101]

    [21]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [22]

    Hou Q Y, Zhao C W, Li J J, Wang G 2011Acta Phys. Sin. 60 047104 (in Chinese) [侯清玉, 赵春旺, 李继军, 王钢 2011 物理学报 60 047104]

    [23]

    Jhm J, Zunger A, Cohen M L 1979 J. Phys. C 12 4409

    [24]

    Xin J, Zheng Y Q, Shi E W 2007 J. Inorg. Mater 22 193 (in Chinese) [忻隽, 郑燕青, 施尔畏 2007 无机材料学报 22 193]

    [25]

    Pournami P V, Marykutty T, George K C 2012 J. Appl. Phys. 112 104308

计量
  • 文章访问数:  1889
  • PDF下载量:  712
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-11
  • 修回日期:  2013-09-04
  • 刊出日期:  2013-12-05

Magnli相亚氧化钛的莫特相变和磁电性能的模拟计算

  • 1. 内蒙古工业大学理学院物理系, 呼和浩特 010051;
  • 2. 内蒙古化工职业学院化学工程系, 呼和浩特 010071
    基金项目: 

    国家自然科学基金(批准号:61366008,51261017)、教育部春晖计划资助项目和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.

摘要: 基于密度泛函理论框架下的第一性原理平面波超软赝势方法,构建纯的单胞与金红石型和锐钛矿型TiO1.9375超胞模型,并对模型进行了几何结构优化、能带结构分布和态密度分布的计算. 结果表明,与纯的单胞相比,金红石和锐钛矿Magnli相TiO1.9375体系体积均变大,稳定性略下降,而且都发生了莫特相变. 其中锐钛矿Magnli相亚氧化钛表现没有磁性,金红石Magnli相亚氧化钛有磁性. 锐钛矿Magnli相亚氧化钛的导电性能比金红石Magnli相亚氧化钛强. 计算结果与实验结果相一致.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回