搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti掺杂ZnO光电性能的第一性原理研究

曲灵丰 侯清玉 许镇潮 赵春旺

引用本文:
Citation:

Ti掺杂ZnO光电性能的第一性原理研究

曲灵丰, 侯清玉, 许镇潮, 赵春旺

Photoelectric properties of Ti doped ZnO: First principles calculation

Qu Ling-Feng, Hou Qing-Yu, Xu Zhen-Chao, Zhao Chun-Wang
PDF
导出引用
  • 在掺杂量为1.04 at%-1.39 at%的范围内,Ti掺杂ZnO体系吸收光谱分布和电导率的实验结果存在争议均有文献报道,但是,迄今为止,对此未有合理的理论解释. 为了解决存在的争议,本文采用基于密度泛函理论的广义梯度近似平面波超软赝势GGA+U的方法,用第一性原理构建了两种不同掺杂量Zn0.9792Ti0.0208O和Zn0.9722Ti0.0278O超胞模型. 所有模型在几何结构优化的基础上,对能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明:在本文限定的掺杂量范围内,Ti掺杂量越增加,掺杂体系体积越增加,体系总能量越升高,体系稳定性越下降,形成能越升高,掺杂越难,掺杂体系布居值减小,Ti-O 键长变长,共价键减弱,离子键增强,所有掺杂体系均转化为n型化简并半导体;掺杂体系带隙越变宽,吸收光谱蓝移越显著,电子有效质量越增加,电子浓度越增加,电子迁移率越减小,电子电导率越减小,掺杂体系导电性能越差. 计算结果与实验结果相符合. 对存在的问题进行了合理的理论解释. 对Ti掺杂ZnO光电功能材料的设计和制备有一定的理论指导作用.
    Nowadays, the studies on absorption spectra and conductivities of Ti doped ZnO systems have presented distinctly different experimental results when the atom fraction of impurity increases in a range from 1.04 at% to 1.39 at% To solve this contradiction, all calculations in this paper are carried out by the CASTEP tool in the Materials Studio software based on the first-principals generalized gradient approximation (GGA) plane wave ultra-soft pseudopotential method of the density functional theory. The supercell geometric structures of ZnO, Zn0.9792Ti0.208O and Zn0.9722Ti0.278O systems are used as the calculation models. For all the geometry optimization models, the band structures, densities of states, electron density differences, population and absorption spectra are calculated by the method of GGA+U. The results show that with the Ti doping amount increasing from 1.04 at% to 1.39 at%, the lattice parameters and also the volume of the doping system increase. The higher the total energy of the doping system, the higher the formation energy of the doping system is, thereby making doping difficult and lower stability of the doping system. The increase of Ti-doping concentration weakens the covalent bond, but strengthens the ionic bond. As the Ti substitutional doping concentration increases, the Mulliken bond populations decrease, but bond lengths of Ti-O increase for the doping system Meanwhile, the higher the Ti doping content, with all the doping systems converted into n-type degenerate semiconductor the wider the band gap of the doping system will be and the more significant the blue shift of absorption spectra of Ti-doped ZnO systems. In this paper the mechanism of band gap widening is reasonably explained. In addition, the higher the Ti doping content, the higher the electronic effective mass of doping systems is The higher the electronic concentration of doping systems, the lower the electronic mobility of doping systems is. The lower the electronic conductivity of doping systems, the worse the doping systems conductivity is. The calculation results of absorption spectrum and conductivity of Ti-doped ZnO system are consistent with the experimental data. And the contradiction between absorption spectrum and conductivity of Ti-doped ZnO system in experiment is explained reasonably by temperature effect. In this paper, the comprehensive optical and electrical properties of Ti-doped ZnO systems are calculated by first-principals GGA+U method. And these results may improve the design and the preparation of photoelectric functional materials for Ti-doped ZnO at quite a low temperature.
      通信作者: 侯清玉, by0501119@126.com
    • 基金项目: 国家自然科学基金(批准号:61366008,11272142)资助的课题.
      Corresponding author: Hou Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 11272142).
    [1]

    Salmani E, Benyoussef A, Ez-Zahraouy H, Saidi E H, Mounkachi O 2012 Chin. Phys. B 21 106601

    [2]

    Gao L, Zhang J M 2009 Chin. Phys. B 18 4536

    [3]

    Yao Y H, Cao Q X {2012 Chin. Phys. B 21 124205

    [4]

    Lin Y C, Hsu C Y, Hung S K, Wen D C 2013 Ceram. Int. 39 5795

    [5]

    Zhong Z Y, Zhang T 2013 Mater. Lett. 96 237

    [6]

    Ye Z Y, Lu H L, Geng Y, Gu Y Z, Xie Z Y, Zhang Y, Sun Q Q, Ding S J, Zhang D W 2013 Nano. Res. Lett. 8 1

    [7]

    Zhao W, Zhou Q, Zhang X, Wu X 2014 Appl. Surf. Sci. 305 481

    [8]

    Huang M C, Wang T H, Cheng S H, Lin J C, Lan W H, Wu C C, Chang W S 2014 Nano. Nanotech. Lett. 6 210

    [9]

    Sridhar R, Manoharan C, Ramalingam S, Dhanapandian S, Bououdina M 2014 Spectrochim. Acta Part A 120 297

    [10]

    Lee S, Lee Y, Kim D Y, Kang T W 2013 J. Appl. Phys. 114 064102

    [11]

    Lin J C, Huang M C, Wang T H, Wu J N, Tseng Y T, Peng K C 2015 Mater. Express 5 153

    [12]

    Mahdavi A, Nadjafikhah M, Toomanian M 2015 Solid State Commun. 218 45

    [13]

    Weng Z, Huang Z, Lin W 2012 Physica B 407 743

    [14]

    Xiong Z H, Jiang F Y 2007 J. Phys. Chem. Solids 68 1500

    [15]

    Bergum K, Fjellvg H, Nilsen O 2015 Appl. Surf. Sci. 332 494

    [16]

    Akilan T, Srinivasan N, Saravanan R 2015 Mater. Sci. Semicond. Process. 30 381

    [17]

    Chung J L, Chen J C, Tseng C J 2008 J. Phys. Chem. Solids 69 535

    [18]

    Guo S Q, Hou Q Y, Zhao C W, Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [郭少强, 侯清玉, 赵春旺, 毛斐 2014 物理学报 63 107101]

    [19]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B 44 943

    [20]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [21]

    Li M, Zhang J, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [22]

    Sun C Q 2003 Prog. Mater. Sci. 48 521

    [23]

    Ju J, Wu X M, Zhuge L J 2012 Int. J. Mod. Phys. B 22 5279

    [24]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [25]

    Pires R G, Dickstein R M, Titcomb S L, Anderson R L 1990 Cryogenics 30 1064

    [26]

    Erhart P, Albe K, Klein A 2006 J. Phys. Rev. B 73 205203

    [27]

    Ursaki V V, Tiginyanu I M, Zalamai V V, Rusu E V, Emelchenko G A, Masalov V M, Samarov E N 2004 Phys. Rev. B 70 155204

    [28]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生1998 半导体物理 (西安: 西安交通大学出版社) 第103 页]

  • [1]

    Salmani E, Benyoussef A, Ez-Zahraouy H, Saidi E H, Mounkachi O 2012 Chin. Phys. B 21 106601

    [2]

    Gao L, Zhang J M 2009 Chin. Phys. B 18 4536

    [3]

    Yao Y H, Cao Q X {2012 Chin. Phys. B 21 124205

    [4]

    Lin Y C, Hsu C Y, Hung S K, Wen D C 2013 Ceram. Int. 39 5795

    [5]

    Zhong Z Y, Zhang T 2013 Mater. Lett. 96 237

    [6]

    Ye Z Y, Lu H L, Geng Y, Gu Y Z, Xie Z Y, Zhang Y, Sun Q Q, Ding S J, Zhang D W 2013 Nano. Res. Lett. 8 1

    [7]

    Zhao W, Zhou Q, Zhang X, Wu X 2014 Appl. Surf. Sci. 305 481

    [8]

    Huang M C, Wang T H, Cheng S H, Lin J C, Lan W H, Wu C C, Chang W S 2014 Nano. Nanotech. Lett. 6 210

    [9]

    Sridhar R, Manoharan C, Ramalingam S, Dhanapandian S, Bououdina M 2014 Spectrochim. Acta Part A 120 297

    [10]

    Lee S, Lee Y, Kim D Y, Kang T W 2013 J. Appl. Phys. 114 064102

    [11]

    Lin J C, Huang M C, Wang T H, Wu J N, Tseng Y T, Peng K C 2015 Mater. Express 5 153

    [12]

    Mahdavi A, Nadjafikhah M, Toomanian M 2015 Solid State Commun. 218 45

    [13]

    Weng Z, Huang Z, Lin W 2012 Physica B 407 743

    [14]

    Xiong Z H, Jiang F Y 2007 J. Phys. Chem. Solids 68 1500

    [15]

    Bergum K, Fjellvg H, Nilsen O 2015 Appl. Surf. Sci. 332 494

    [16]

    Akilan T, Srinivasan N, Saravanan R 2015 Mater. Sci. Semicond. Process. 30 381

    [17]

    Chung J L, Chen J C, Tseng C J 2008 J. Phys. Chem. Solids 69 535

    [18]

    Guo S Q, Hou Q Y, Zhao C W, Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [郭少强, 侯清玉, 赵春旺, 毛斐 2014 物理学报 63 107101]

    [19]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B 44 943

    [20]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [21]

    Li M, Zhang J, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [22]

    Sun C Q 2003 Prog. Mater. Sci. 48 521

    [23]

    Ju J, Wu X M, Zhuge L J 2012 Int. J. Mod. Phys. B 22 5279

    [24]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [25]

    Pires R G, Dickstein R M, Titcomb S L, Anderson R L 1990 Cryogenics 30 1064

    [26]

    Erhart P, Albe K, Klein A 2006 J. Phys. Rev. B 73 205203

    [27]

    Ursaki V V, Tiginyanu I M, Zalamai V V, Rusu E V, Emelchenko G A, Masalov V M, Samarov E N 2004 Phys. Rev. B 70 155204

    [28]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生1998 半导体物理 (西安: 西安交通大学出版社) 第103 页]

  • [1] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [2] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [3] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究. 物理学报, 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [4] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [5] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [6] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [7] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [8] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究. 物理学报, 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [9] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [10] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [11] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [12] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [13] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [14] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [15] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [16] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [17] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [18] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [19] 檀满林, 朱嘉琦, 张化宇, 朱振业, 韩杰才. 硼掺杂对四面体非晶碳膜电导性能的影响. 物理学报, 2008, 57(10): 6551-6556. doi: 10.7498/aps.57.6551
    [20] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
计量
  • 文章访问数:  3419
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-14
  • 修回日期:  2016-05-26
  • 刊出日期:  2016-08-05

Ti掺杂ZnO光电性能的第一性原理研究

  • 1. 内蒙古工业大学理学院物理系, 呼和浩特 010051;
  • 2. 上海海事大学文理学院, 上海 201306;
  • 3. 内蒙古自治区薄膜与涂层重点实验室, 呼和浩特 010051
  • 通信作者: 侯清玉, by0501119@126.com
    基金项目: 国家自然科学基金(批准号:61366008,11272142)资助的课题.

摘要: 在掺杂量为1.04 at%-1.39 at%的范围内,Ti掺杂ZnO体系吸收光谱分布和电导率的实验结果存在争议均有文献报道,但是,迄今为止,对此未有合理的理论解释. 为了解决存在的争议,本文采用基于密度泛函理论的广义梯度近似平面波超软赝势GGA+U的方法,用第一性原理构建了两种不同掺杂量Zn0.9792Ti0.0208O和Zn0.9722Ti0.0278O超胞模型. 所有模型在几何结构优化的基础上,对能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明:在本文限定的掺杂量范围内,Ti掺杂量越增加,掺杂体系体积越增加,体系总能量越升高,体系稳定性越下降,形成能越升高,掺杂越难,掺杂体系布居值减小,Ti-O 键长变长,共价键减弱,离子键增强,所有掺杂体系均转化为n型化简并半导体;掺杂体系带隙越变宽,吸收光谱蓝移越显著,电子有效质量越增加,电子浓度越增加,电子迁移率越减小,电子电导率越减小,掺杂体系导电性能越差. 计算结果与实验结果相符合. 对存在的问题进行了合理的理论解释. 对Ti掺杂ZnO光电功能材料的设计和制备有一定的理论指导作用.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回