搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究

薛丽 任一鸣

引用本文:
Citation:

CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究

薛丽, 任一鸣

The first-principles study of electrical and thermoelectric properties of CuGaTe2 and CuInTe2

Xue Li, Ren Yi-Ming
PDF
导出引用
  • 热电材料是通过载流子作用实现热能和电能直接转换的功能材料,在能源、环境、国防等领域具有重要应用. 如何提高材料的转换效率是目前热电材料研究的关键. 最近发现,三元黄铜矿I-III-IV2(I=Ag,Cu;III=Al,Ga,In;IV=S,Se,Te)是一类潜在的高性能热电材料,其结构独特,可通过多种途径优化其性能. 本文采用基于密度泛函理论的第一性原理方法系统地研究CuGaTe2和CuInTe2的电子特性,为提高其热电效率提供新思路. 研究发现改进的Becke Johnson-广义梯度近似比广义梯度近似交换关联近似计算的能隙值更接近实验值. 基于玻尔兹曼理论研究了体系热电性质,发现通过优化载流子的浓度可以改善体系的热电性. 通过拟合计算的晶格热导率发现,在300-800 K,CuGaTe2和CuInTe2的晶格热导率和温度成反比,表明其晶格热导率主要来源于声子散射,并且声子散射又是以Umklapp散射为主. CuGaTe2在700 K的热电优值ZT 可以达到0.63,远大于其他Te类材料的ZT值.
    The thermoelectric material is a kind of new functional material, which can convert industrial waste heat and automobile exhaust into the available electric energy by the interaction of carriers. It is widely used in energy, environment, national defense and other fields. For the research of thermoelectric materials, it is the most important to improve the conversion efficiency now. Due to their unique structural properties, the ternary chalcopyrite semiconductors I-III-IV2 (I=Ag, Cu; III=Al, Ga, In; IV=S, Se, Te) display the better thermoelectric performances at high temperature. Many studies show that there are many ways to improve their performances. In order to optimize their thermoelectric efficiencies the structural, elastic and thermoelectric properties of CuGaTe2 and CuInTe2 are studied by employing the density function theory and semi-classical Boltzmann transport theory within the constant time approximation. The electronic band structures are calculated using the Tran-Blaha modified Becke-Johnson potential (MBJ-GGA) and the generalized gradient approximation (GGA). The calculated band gaps with MBJ-GGA of CuGaTe2and CuInTe2 are 0.86 and 0.56 eV, which are more accurate than the calculated values with GGA. The shear modulus, and Young's modulus and sound velocities are determined from the obtained elastic constants. The constant-volume heat capacity is estimated based on the quasi-harmonic Debye model. The calculated temperature dependence of heat capacity agrees very well with the experimental result. Below room temperature, the heat capacity increases quickly with the increasing of temperature. Above room temperature, the heat capacity approaches to the Dulong-Petit limit. In paper, we assume that the lattice thermal conductivities of CuGaTe2 and CuInTe2 are mainly from the phonon scattering. And the phonon scattering is dominated by Umklapp scattering. The calculated lattice thermal conductivities can fit the form kl = A/T-Bin the temperature range of 300-800 K. For CuGaTe2, A = 2869.96 and B = 2.86. The fitting result well approaches to the experimental values and other theoretical results. Based on the calculated band structures with mBJ-GGA potential, the transport properties of CuGaTe2 and CuInTe2 each as a function of chemical potential at various temperatures are investigated. The values of Seebeck coefficient S first increase and then decrease for n-type and p-type doping at low carrier concentrations, which are consistent with the previous results. Electrical conductivity divided by scattering time, i.e. / increases monotonically with chemical potential increasing. The power factor divided by scattering time, i.e. S2/ first increases and then decreases with chemical potential increasing. The magnitude of S2/ increases with temperature increasing. Besides, it is found that the value of S2/ for p-type doping is larger than that for n-type doping. These results show that optimizing the carrier concentration can improve their thermoelectric performances. In order to calculate the electrical conductivity, in this paper we estimate the scattering time from the experiments of Ref.[3]. The CuGaTe2 at 700 K possesses a figure of merit 0.63. These calculated results show that CuGaTe2 and CuInTe2 both are good thermoelectric materials with p-type doping.
      通信作者: 薛丽, xueli0610@163.com
    • 基金项目: 湖北科技学院博士启动基金(批准号:BK1427)、湖北省科技厅项目(批准号:2013CFB038)和国家自然科学基金(批准号:11304105)资助的课题.
      Corresponding author: Xue Li, xueli0610@163.com
    • Funds: Project supported by the Foundation of School of Electronic and Information Engineering, Hubei University of Science and Technology (Grant No. BK1427), the Educational Commission of Hubei Province of China (Grant No. 2013CFB038), and the Special Funds of the National Natural Science Foundation of China (Grant No. 11304105).
    [1]

    Charoenphakdee A, Kurosaki K, Muta H, Uno M, Yamanaka S 2009 Mater. Trans. 50 1603

    [2]

    Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 99 061902

    [3]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Muta H 2012 Adv. Mater. 24 3622

    [4]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818

    [5]

    Zhu Y, Zhang X Y, Zhang S H, Ma M Z, Liu R P, Tian H Y 2015 Acta Phys. Sin. 64 77103 (in Chinese) [朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕 2015 物理学报 64 77103]

    [6]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 物理学报 63 057201]

    [7]

    Xue L, Xu B, Yi L 2014 Chin. Phys. B 23 037103

    [8]

    Blaha P Schwarz K, Madsen G K H Kvasnicka D, Luitz J 2001 WIEN2K, An Augmented Plane Wave+Local Orbitals Pro-gram for Calculating Crystal Properties (Wien, Austria: K Schwarz, Tech. Univ.)

    [9]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67

    [10]

    Bodnar I V, Orlova N S {1986 Cryst. Res. Technol 21 109

    [11]

    Avon J E Yoodee K, Woolley J C 1984 J. Appl. Phys. 55 524

    [12]

    Johnson E R, Becke A D 2006 J. Chem. Phys. 124 174104

    [13]

    Zhang X Z, Shen K S, Jiao Z Y, Huang X F 2013 Comput. Theor. Chem. 1010 67

    [14]

    Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822

    [15]

    Singh D J, Mazin I I 1997 Phys. Rev. B 56 R1650

    [16]

    Tao X, Jund P, Colinet C, Tedenac J C 2009 Phys. Rev. B 80 104103

    [17]

    Verma A S, Sharma S, Bhandari R, Sarkar B K, Jindal V K 2012 Mater. Chem. Phys. 132 416

    [18]

    Bachmann K J, Hsu F S L, Thiel F A, Kasper H M 1977 J. Electron. Mater. 6 431

    [19]

    Kumar V, Tripathy S K 2014 J. Alloys Compd. 582 101

    [20]

    Shao D Y, Hui Q, Li X, Chen J J, Li C M, Cheng N P {2015 Acta Phys. Sin. 64 207102 (in Chinese) [邵栋元, 惠群, 李孝, 陈晶晶, 李春梅,程南璞 2015 物理学报 64 207102]

    [21]

    Ouahrani T, Otero-de-la-Roza A, Reshak A H, Khenata R, Faraoun H I, Amrani B, Luaa V 2010 Physica B 405 3658

    [22]

    Verma A S, Bhardwaj S R 2006 Phys. Stat. Sol. 243 4025

    [23]

    Schreiber E, Orson L 1974 Elastic Constants and their Measurement(Mishawaka: Better World Books)

    [24]

    Huang K, Han L Q 1998 Solid-state Physics (Beijing: Higher Education Press) p125 (in Chinese) [黄昆, 韩汝琦 1988 固体物理学 (北京: 高等教育出版) 第 125页]

    [25]

    Zou D F Xie S H, Liu Y Y, Lin J G, Li J Y 2013 J. Alloys Compd. 570 150

    [26]

    Leibfried G, Schlomann E {1954 Nachr. Akad. Wiss. Gottingen Math-physik Kl. 2a 4 71

    [27]

    Tang X F, Xie W J, Li H, Zhao W Y, Zhang Q J 2007 Appl. Phys. Lett. 90 12102

    [28]

    LaLonde A D, Pei Y, Wang H, Snyder G J 2011 Mater. Today 14 526

    [29]

    Ong K P, Singh D J Wu P 2011 Phys. Rev. B 83 115110

  • [1]

    Charoenphakdee A, Kurosaki K, Muta H, Uno M, Yamanaka S 2009 Mater. Trans. 50 1603

    [2]

    Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 99 061902

    [3]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Muta H 2012 Adv. Mater. 24 3622

    [4]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818

    [5]

    Zhu Y, Zhang X Y, Zhang S H, Ma M Z, Liu R P, Tian H Y 2015 Acta Phys. Sin. 64 77103 (in Chinese) [朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕 2015 物理学报 64 77103]

    [6]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 物理学报 63 057201]

    [7]

    Xue L, Xu B, Yi L 2014 Chin. Phys. B 23 037103

    [8]

    Blaha P Schwarz K, Madsen G K H Kvasnicka D, Luitz J 2001 WIEN2K, An Augmented Plane Wave+Local Orbitals Pro-gram for Calculating Crystal Properties (Wien, Austria: K Schwarz, Tech. Univ.)

    [9]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67

    [10]

    Bodnar I V, Orlova N S {1986 Cryst. Res. Technol 21 109

    [11]

    Avon J E Yoodee K, Woolley J C 1984 J. Appl. Phys. 55 524

    [12]

    Johnson E R, Becke A D 2006 J. Chem. Phys. 124 174104

    [13]

    Zhang X Z, Shen K S, Jiao Z Y, Huang X F 2013 Comput. Theor. Chem. 1010 67

    [14]

    Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822

    [15]

    Singh D J, Mazin I I 1997 Phys. Rev. B 56 R1650

    [16]

    Tao X, Jund P, Colinet C, Tedenac J C 2009 Phys. Rev. B 80 104103

    [17]

    Verma A S, Sharma S, Bhandari R, Sarkar B K, Jindal V K 2012 Mater. Chem. Phys. 132 416

    [18]

    Bachmann K J, Hsu F S L, Thiel F A, Kasper H M 1977 J. Electron. Mater. 6 431

    [19]

    Kumar V, Tripathy S K 2014 J. Alloys Compd. 582 101

    [20]

    Shao D Y, Hui Q, Li X, Chen J J, Li C M, Cheng N P {2015 Acta Phys. Sin. 64 207102 (in Chinese) [邵栋元, 惠群, 李孝, 陈晶晶, 李春梅,程南璞 2015 物理学报 64 207102]

    [21]

    Ouahrani T, Otero-de-la-Roza A, Reshak A H, Khenata R, Faraoun H I, Amrani B, Luaa V 2010 Physica B 405 3658

    [22]

    Verma A S, Bhardwaj S R 2006 Phys. Stat. Sol. 243 4025

    [23]

    Schreiber E, Orson L 1974 Elastic Constants and their Measurement(Mishawaka: Better World Books)

    [24]

    Huang K, Han L Q 1998 Solid-state Physics (Beijing: Higher Education Press) p125 (in Chinese) [黄昆, 韩汝琦 1988 固体物理学 (北京: 高等教育出版) 第 125页]

    [25]

    Zou D F Xie S H, Liu Y Y, Lin J G, Li J Y 2013 J. Alloys Compd. 570 150

    [26]

    Leibfried G, Schlomann E {1954 Nachr. Akad. Wiss. Gottingen Math-physik Kl. 2a 4 71

    [27]

    Tang X F, Xie W J, Li H, Zhao W Y, Zhang Q J 2007 Appl. Phys. Lett. 90 12102

    [28]

    LaLonde A D, Pei Y, Wang H, Snyder G J 2011 Mater. Today 14 526

    [29]

    Ong K P, Singh D J Wu P 2011 Phys. Rev. B 83 115110

  • [1] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220939
    [2] 秦文静, 徐波, 孙宝珍, 刘刚. 原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究. 物理学报, 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [3] 祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉. 金刚石/铝复合材料界面性质第一性原理计算及界面反应. 物理学报, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [4] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化. 物理学报, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [5] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [6] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [7] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [8] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能. 物理学报, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [9] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [10] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究. 物理学报, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [11] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究bct-C4碳材料的强度性质. 物理学报, 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [12] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究hcp-C3碳体环材料的力学性质. 物理学报, 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [13] 刘显坤, 刘颖, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究. 物理学报, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [14] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [15] 尚家香, 于潭波. NiAl和Cr材料中H原子间隙的第一性原理计算. 物理学报, 2009, 58(2): 1179-1184. doi: 10.7498/aps.58.1179
    [16] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [17] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [18] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计. 物理学报, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [19] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究. 物理学报, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  4025
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-23
  • 修回日期:  2016-05-31
  • 刊出日期:  2016-08-05

CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究

  • 1. 湖北科技学院电子与信息工程学院, 咸宁 437000
  • 通信作者: 薛丽, xueli0610@163.com
    基金项目: 湖北科技学院博士启动基金(批准号:BK1427)、湖北省科技厅项目(批准号:2013CFB038)和国家自然科学基金(批准号:11304105)资助的课题.

摘要: 热电材料是通过载流子作用实现热能和电能直接转换的功能材料,在能源、环境、国防等领域具有重要应用. 如何提高材料的转换效率是目前热电材料研究的关键. 最近发现,三元黄铜矿I-III-IV2(I=Ag,Cu;III=Al,Ga,In;IV=S,Se,Te)是一类潜在的高性能热电材料,其结构独特,可通过多种途径优化其性能. 本文采用基于密度泛函理论的第一性原理方法系统地研究CuGaTe2和CuInTe2的电子特性,为提高其热电效率提供新思路. 研究发现改进的Becke Johnson-广义梯度近似比广义梯度近似交换关联近似计算的能隙值更接近实验值. 基于玻尔兹曼理论研究了体系热电性质,发现通过优化载流子的浓度可以改善体系的热电性. 通过拟合计算的晶格热导率发现,在300-800 K,CuGaTe2和CuInTe2的晶格热导率和温度成反比,表明其晶格热导率主要来源于声子散射,并且声子散射又是以Umklapp散射为主. CuGaTe2在700 K的热电优值ZT 可以达到0.63,远大于其他Te类材料的ZT值.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回