搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有本征低晶格热导率的硫化银快离子导体的热电性能

王拓 陈弘毅 仇鹏飞 史迅 陈立东

引用本文:
Citation:

具有本征低晶格热导率的硫化银快离子导体的热电性能

王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东

Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity

Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong
PDF
HTML
导出引用
  • 硫化银(Ag2S)是一种典型的快离子导体材料, 前期关于Ag2S的研究主要集中在光电和生物等领域. 最近的研究表明, α-Ag2S具有和金属一样的良好延展性和变形能力. 但是, Ag2S的热电性能尚无公开报道. 本工作合成了单相Ag2S化合物, 系统研究了其在300—600 K范围的物相变化、离子迁移特性和电热输运性质. 研究发现, Ag2S在300—600 K温度区间表现出半导体的电输运性质. 由于单斜-体心立方相晶体结构转变, Ag2S的离子电导率、载流子浓度、迁移率、电导率、泽贝克系数等性质在455 K前后出现急剧变化. 在550 K, Ag2S的功率因子最高可达5 μW·cm–1·K–2. Ag2S在300—600 K温度区间均表现出本征的低晶格热导率(低于0.6 W·m–1·K–1). S亚晶格中随机分布的类液态Ag离子是导致β-Ag2S体心立方相具有低晶格热导率的主要原因. 在573 K, Ag2S的热电优值可达0.55, 与Ag2Se, Ag2Te, CuAgSe等已报道的Ag基快离子导体热电材料的性能相当.
    Recently, Ag2S superionic conductor has attracted great attention due to its metal-like ductility and deformability. In this work, the single phase Ag2S compound is fabricated by the melting-annealing method. The crystal structure, ionic conduction, and electrical and thermal transports in a temperature range of 300-600 K are systematically investigated. The monoclinic-cubic crystal structure transition occurs around 455 K for Ag2S. Significant reduction in the specific heat at constant volume below the Dulong-Petit limit is observed for Ag2S after the monoclinic-cubic phase transition, which is attributed to the liquid-like Ag ions existing inside the sulfur framework. Ag2S shows typical semiconducting-like electrical transport behavior in the whole measured temperature range. Around 455 K, the ionic conductivity, carrier concentration, carrier mobility, electrical conductivity, and Seebeck coefficient each show an abrupt change. The calculated ionic activation based on the ionic conductivity is 0.076 eV for the body centered cubic Ag2S. The calculated band gap based on the electrical conductivity decreases from 1.1 eV for the monoclinic Ag2S to 0.42 eV for the body centered cubic Ag2S. The abrupt increase of electrical conductivity after the monoclinic-cubic phase transition leads to a maximum power factor around 5 μW·cm–1·K–2 at 550 K. In the whole measured temperature range, Ag2S demonstrates an intrinsically low lattice thermal conductivity (below 0.6 W·m–1·K–1). The calculated phonon dispersion indicates that the weak chemical bonding between Ag and S is responsible for the low lattice thermal conductivity observed in the monoclinic Ag2S. Likewise, the presence of liquid-like Ag ions with low ionic activation energy is responsible for the low lattice thermal conductivity for the cubic Ag2S. Finally, the Ag2S shows the maximum thermoelectric figure of merit of 0.55 at 580 K, which is comparable to the thermoelectric figure of merit reported before in most of Ag-based thermoelectric superionic conductors.
      通信作者: 仇鹏飞, qiupf@mail.sic.ac.cn ; 史迅, xshi@mail.sic.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0703600)、国家自然科学基金杰出青年科学基金(批准号: 51625205)、中国科学院重点部署项目(批准号: KFZD-SW-421)和中国科学院青年创新促进会(批准号:2016232)资助的课题.
      Corresponding author: Qiu Peng-Fei, qiupf@mail.sic.ac.cn ; Shi Xun, xshi@mail.sic.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703600), the National Natural Science Foundation of China (Grant No. 51625205), the Key Research Program of Chinese Academy of Sciences (Grant No. KFZD-SW-421), and the Youth Innovation Promotion Association, CAS (Grant No. 2016232).
    [1]

    Tan G, Zhao L, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [2]

    Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J 2016 Angew. Chem: Int. Ed. 55 6826Google Scholar

    [3]

    Shi X, Chen L, Uher C 2016 Int. Mater. Rev. 61 379Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder J G 2012 Nat. Mater. 11 422Google Scholar

    [6]

    Zhao K, Qiu P, Song Q, Blichfeld A B, Eikeland E, Ren D, Ge B, Iversen B B, Shi X, Chen L 2017 Mater. Today Phys. 1 14Google Scholar

    [7]

    Zhu C, He Y, Lu P, Fu Z, Xu F, Yao H, Zhang L, Shi X, Chen L 2017 Ceram. Int. 43 7866Google Scholar

    [8]

    Zhao K, Guan M, Qiu P, Blichfeld A B, Eikeland E, Zhu C, Ren D, Xu F, Iversen B B, Shi X, Chen L 2018 J. Mater. Chem. A 6 6977Google Scholar

    [9]

    Lü Y, Chen J, Max D, Li Y, Shi X, Chen L 2015 J. Inorg. Mater. 30 1115Google Scholar

    [10]

    Wang X, Qiu P, Zhang T, Ren D, Wu L, Shi X, Yang J, Chen L 2015 J. Mater. Chem. A 3 13662Google Scholar

    [11]

    Bhattacharya S, Basu R, Bhatt R, Pitale S, Singh A, Aswal D K, Gupta S K, Navaneethan M, Hayakawa Y 2013 J. Mater. Chem. A 1 11289Google Scholar

    [12]

    Jiang B, Qiu P, EikelandE, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943Google Scholar

    [13]

    Jiang B, Qiu P, Chen H, Zhang Q, Zhao K, Ren D, Shi X, Chen L 2017 Chem. Commun. 53 11658Google Scholar

    [14]

    Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar

    [15]

    Rahlfs P 1936 Zeitschrift für Phys. Chem. 31B 157

    [16]

    Skinner B J 1966 Econ. Geol. 61 1Google Scholar

    [17]

    董占民, 孙红三, 许佳, 李一, 孙家林 2011 物理学报 60 077304Google Scholar

    Dong Z M, Sun H S, Xu J, Li Y, Sun J L 2011 Acta Phys. Sin. 60 077304Google Scholar

    [18]

    Yang J, Ying J Y 2011 Angew. Chem.: Int. Ed. 50 4637Google Scholar

    [19]

    Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K 2014 Inorg. Chem. 53 8902Google Scholar

    [20]

    ZhangY, Hong G, ZhangY, Chen G, Li F, Dai H, Wang Q 2012 ACS Nano 6 3695Google Scholar

    [21]

    Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q 2010 J. Am. Chem. Soc. 132 1470Google Scholar

    [22]

    邓立儿, 李妍, 巩蕾, 王佳 2018 无机材料学报 33 825

    Deng L, Li Y, Gong L, Wang J 2018 J. Inorg. Mater. 33 825

    [23]

    Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q, Dai H 2012 Angew. Chem.: Int. Ed. 51 9818Google Scholar

    [24]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [25]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 王佳, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zeng L J K, Liu Y F, Zhang J Y, Wang J, Xing J J, Luo J 2016 Acta Phys. Sin. 65 107201Google Scholar

    [26]

    杨小燕, 吴洁华, 任都迪, 张天松, 陈立东 2016 无机材料学报 31 997

    Yang X Y, Wu J H, Ren D D, Zhang T S, Chen L D 2016 J. Inorg. Mater. 31 997

    [27]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [28]

    Shi X, Zhang W, Chen L, Yang J 2005 Phys. Rev. Lett. 95 185503Google Scholar

    [29]

    姚铮, 仇鹏飞, 李小亚, 陈立东 2016 无机材料学报 31 1375

    Yao Z, Qiu P F, Li X Y, Chen L D 2016 J. Inorg. Mater. 31 1375

    [30]

    Day T, Drymiotis F, Zhang T, Rhodes D, Shi X, Chen L, Snyder G J 2013 J. Mater. Chem. C 1 7568Google Scholar

    [31]

    Pei Y, Heinz N A, Snyder G J 2011 J. Mater. Chem. 21 18256Google Scholar

    [32]

    Liu Y, Qiu P, Chen H, Chen R, Shi X, Chen L 2017 J. Inorg. Mater. 32 1337Google Scholar

    [33]

    Tsuchiya Y, Tamaki S, Waseda Y, Toguri J M 1978 J. Phys. C: Solid State Phys. 11 651Google Scholar

    [34]

    Blanton T, Misture S, Dontula N, Zdzieszynski S 2011 Powder Diffr. 26 114Google Scholar

    [35]

    Honma K, Iida K 1987 J. Phys. Soc. Japan 56 1828Google Scholar

    [36]

    Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y, Tokura Y 2013 Nat. Mater. 12 512Google Scholar

    [37]

    He Y, Da yT, Zhang T, Liu H, Shi X, Chen L, Snyder G J 2014 Adv. Mater. 26 3974Google Scholar

    [38]

    Liu H, YuanX, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607Google Scholar

    [39]

    Aliev F F, Jafarov M B, Tairov B A, Pashaev G P, Saddinova A A, Kuliev A A 2008 Semiconductors 42 1146Google Scholar

    [40]

    Balapanov M K, Gafurov I G, Mukhamed'yanov U K, Yakshibaev R A, Ishembetov R K 2004 Phys. Status Solidi B 241 114Google Scholar

    [41]

    Mi W, Qiu P, Zhang T, Lü Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903Google Scholar

    [42]

    Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y 2012 J. Am. Chem. Soc. 134 4287Google Scholar

    [43]

    He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C, Chen L 2015 Adv. Mater. 27 3639Google Scholar

    [44]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

  • 图 1  Ag2S化合物在(a) 300 K和(b) 600 K时的块体XRD图谱

    Fig. 1.  Bulk XRD patterns of Ag2S compound at (a) 300 K and (b) 600 K.

    图 2  Ag2S化合物的(a)背散射电子图片; (b)所有元素, (c) Ag和(d) S的元素分布

    Fig. 2.  (a) Backscattering image of Ag2S compound. Elemental mappings of (b) all elements, (c) Ag, and (d) S, respectively.

    图 3  Ag2S化合物的(a)定压热容Cp及(b)相同温度下的Cp和定容热容CV计算值的比较, 其中点划线分别为固体的CV理论值3NkB和液体的CV理论值2NkB

    Fig. 3.  (a) Specific heat at constant pressure Cp of Ag2S compound; (b) comparison of Cp and the calculated specific heat at constant volume CV. The dash-dot lines are the theoretical CV of solid and liquid, respectively.

    图 4  Ag2S化合物的离子电导率(σi)随温度的变化

    Fig. 4.  Temperature dependence of ionic conductivity (σi) for Ag2S compound.

    图 5  Ag2S化合物的(a)载流子浓度nH和(b)载流子迁移率$ {{\mu} _{\rm{H}}}$随温度的变化

    Fig. 5.  Temperature dependences of (a) carrier concentration nH and (b) carrier mobility $ {{\mu} _{\rm{H}}}$ for Ag2S compound.

    图 6  Ag2S化合物的(a)泽贝克系数S、(b)电导率σ、(c)功率因子PF随温度的变化

    Fig. 6.  Temperature dependences of (a) Seebeck coefficient S, (b) electrical conductivity σ, and (c) power factor (PF) for Ag2S compound.

    图 7  Ag2S化合物的(a)总热导率κ和(b)晶格热导率κL随温度的变化, 图(b)中虚线所示为Cu2Se[5]和Cu2S[37]快离子导体热电材料的晶格热导率

    Fig. 7.  Temperature dependences of (a) total thermal concentration κ and (b) lattice thermal conductivity κL for Ag2S compound. The κL data for Cu2Se[5] and Cu2S[37] are included for comparison in panel (b).

    图 8  Ag2S的声子色散关系和声子态密度图

    Fig. 8.  Phonon dispersion relations and density of states for Ag2S compound.

    图 9  Ag2S化合物的热电优值zT随温度的变化, 虚线所示为Ag2Se[30], Ag2Te[31]和CuAgSe[10]等Ag基快离子导体热电材料的热电优值

    Fig. 9.  Temperature dependence of thermoelectric figure-of-merit zT for Ag2S compound. The data for Ag2Se[30], Ag2Te[31] and CuAgSe[10] are included for comparison.

  • [1]

    Tan G, Zhao L, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [2]

    Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J 2016 Angew. Chem: Int. Ed. 55 6826Google Scholar

    [3]

    Shi X, Chen L, Uher C 2016 Int. Mater. Rev. 61 379Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder J G 2012 Nat. Mater. 11 422Google Scholar

    [6]

    Zhao K, Qiu P, Song Q, Blichfeld A B, Eikeland E, Ren D, Ge B, Iversen B B, Shi X, Chen L 2017 Mater. Today Phys. 1 14Google Scholar

    [7]

    Zhu C, He Y, Lu P, Fu Z, Xu F, Yao H, Zhang L, Shi X, Chen L 2017 Ceram. Int. 43 7866Google Scholar

    [8]

    Zhao K, Guan M, Qiu P, Blichfeld A B, Eikeland E, Zhu C, Ren D, Xu F, Iversen B B, Shi X, Chen L 2018 J. Mater. Chem. A 6 6977Google Scholar

    [9]

    Lü Y, Chen J, Max D, Li Y, Shi X, Chen L 2015 J. Inorg. Mater. 30 1115Google Scholar

    [10]

    Wang X, Qiu P, Zhang T, Ren D, Wu L, Shi X, Yang J, Chen L 2015 J. Mater. Chem. A 3 13662Google Scholar

    [11]

    Bhattacharya S, Basu R, Bhatt R, Pitale S, Singh A, Aswal D K, Gupta S K, Navaneethan M, Hayakawa Y 2013 J. Mater. Chem. A 1 11289Google Scholar

    [12]

    Jiang B, Qiu P, EikelandE, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943Google Scholar

    [13]

    Jiang B, Qiu P, Chen H, Zhang Q, Zhao K, Ren D, Shi X, Chen L 2017 Chem. Commun. 53 11658Google Scholar

    [14]

    Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar

    [15]

    Rahlfs P 1936 Zeitschrift für Phys. Chem. 31B 157

    [16]

    Skinner B J 1966 Econ. Geol. 61 1Google Scholar

    [17]

    董占民, 孙红三, 许佳, 李一, 孙家林 2011 物理学报 60 077304Google Scholar

    Dong Z M, Sun H S, Xu J, Li Y, Sun J L 2011 Acta Phys. Sin. 60 077304Google Scholar

    [18]

    Yang J, Ying J Y 2011 Angew. Chem.: Int. Ed. 50 4637Google Scholar

    [19]

    Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K 2014 Inorg. Chem. 53 8902Google Scholar

    [20]

    ZhangY, Hong G, ZhangY, Chen G, Li F, Dai H, Wang Q 2012 ACS Nano 6 3695Google Scholar

    [21]

    Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q 2010 J. Am. Chem. Soc. 132 1470Google Scholar

    [22]

    邓立儿, 李妍, 巩蕾, 王佳 2018 无机材料学报 33 825

    Deng L, Li Y, Gong L, Wang J 2018 J. Inorg. Mater. 33 825

    [23]

    Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q, Dai H 2012 Angew. Chem.: Int. Ed. 51 9818Google Scholar

    [24]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [25]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 王佳, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zeng L J K, Liu Y F, Zhang J Y, Wang J, Xing J J, Luo J 2016 Acta Phys. Sin. 65 107201Google Scholar

    [26]

    杨小燕, 吴洁华, 任都迪, 张天松, 陈立东 2016 无机材料学报 31 997

    Yang X Y, Wu J H, Ren D D, Zhang T S, Chen L D 2016 J. Inorg. Mater. 31 997

    [27]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [28]

    Shi X, Zhang W, Chen L, Yang J 2005 Phys. Rev. Lett. 95 185503Google Scholar

    [29]

    姚铮, 仇鹏飞, 李小亚, 陈立东 2016 无机材料学报 31 1375

    Yao Z, Qiu P F, Li X Y, Chen L D 2016 J. Inorg. Mater. 31 1375

    [30]

    Day T, Drymiotis F, Zhang T, Rhodes D, Shi X, Chen L, Snyder G J 2013 J. Mater. Chem. C 1 7568Google Scholar

    [31]

    Pei Y, Heinz N A, Snyder G J 2011 J. Mater. Chem. 21 18256Google Scholar

    [32]

    Liu Y, Qiu P, Chen H, Chen R, Shi X, Chen L 2017 J. Inorg. Mater. 32 1337Google Scholar

    [33]

    Tsuchiya Y, Tamaki S, Waseda Y, Toguri J M 1978 J. Phys. C: Solid State Phys. 11 651Google Scholar

    [34]

    Blanton T, Misture S, Dontula N, Zdzieszynski S 2011 Powder Diffr. 26 114Google Scholar

    [35]

    Honma K, Iida K 1987 J. Phys. Soc. Japan 56 1828Google Scholar

    [36]

    Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y, Tokura Y 2013 Nat. Mater. 12 512Google Scholar

    [37]

    He Y, Da yT, Zhang T, Liu H, Shi X, Chen L, Snyder G J 2014 Adv. Mater. 26 3974Google Scholar

    [38]

    Liu H, YuanX, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607Google Scholar

    [39]

    Aliev F F, Jafarov M B, Tairov B A, Pashaev G P, Saddinova A A, Kuliev A A 2008 Semiconductors 42 1146Google Scholar

    [40]

    Balapanov M K, Gafurov I G, Mukhamed'yanov U K, Yakshibaev R A, Ishembetov R K 2004 Phys. Status Solidi B 241 114Google Scholar

    [41]

    Mi W, Qiu P, Zhang T, Lü Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903Google Scholar

    [42]

    Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y 2012 J. Am. Chem. Soc. 134 4287Google Scholar

    [43]

    He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C, Chen L 2015 Adv. Mater. 27 3639Google Scholar

    [44]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

  • [1] 张翠萍, 朱金峰, 沈晓玲, 舒明方, 任清勇, 马杰. 中子散射技术在Zintl相化合物热导率研究中的应用. 物理学报, 2025, 74(1): 017301. doi: 10.7498/aps.74.20241163
    [2] 任清勇, 王建立, 李昺, 马杰, 童欣. 复杂晶格动力学与能源材料的中子散射研究. 物理学报, 2025, 74(1): 012801. doi: 10.7498/aps.74.20241178
    [3] 李环娅, 周柯, 尹万健. 材料的非简谐性描述符. 物理学报, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [4] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [5] 冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣. 纳米组装相变储热材料的热设计前沿. 物理学报, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [6] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [7] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [8] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能. 物理学报, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [10] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [11] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [12] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器. 物理学报, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [13] 宋婷婷, 何捷, 林理彬, 陈军. 氧化钒晶体的半导体至金属相变的理论研究. 物理学报, 2010, 59(9): 6480-6486. doi: 10.7498/aps.59.6480
    [14] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [15] 张轶群, 施 毅, 濮 林, 张 荣, 郑有炓. 纳米线阵列横向输运的热电特性研究. 物理学报, 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [16] 罗派峰, 唐新峰, 熊 聪, 张清杰. 多壁碳纳米管对p型Ba0.3FeCo3Sb12化合物热电性能的影响. 物理学报, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [17] 张可言. 金属材料在中强度激光辐照下的相变速度研究. 物理学报, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [18] 罗派峰, 唐新峰, 李 涵, 刘桃香. Ba和Ce两种原子复合填充BamCenFeCo3Sb12化合物的合成及热电性能. 物理学报, 2004, 53(9): 3234-3238. doi: 10.7498/aps.53.3234
    [19] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. p型BayFexCo4-xSb12化合物的热电性能. 物理学报, 2001, 50(8): 1560-1566. doi: 10.7498/aps.50.1560
    [20] 唐新峰, 陈立东, 後藤 孝, 平井 敏雄, 袁润章. Ce填充分数对p型CeyFe1.5Co2.5Sb12化合 物热电传输特性的影响. 物理学报, 2000, 49(12): 2460-2465. doi: 10.7498/aps.49.2460
计量
  • 文章访问数:  17400
  • PDF下载量:  553
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-14
  • 修回日期:  2019-03-01
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回