-
The present paper briefly reviews the development progress of solid-liquid phase change materials, particularly the nano-porous shape-stabilized phase change materials. We outline the designs and syntheses of the heat storage functional materials and the thermophysical mechanism of loading, crystallization, and thermal transport in nano-confined space. Besides, the remarkable methods to enhance the heat storage and release performance of heterogeneous materials are included. However, at present, the single-size porous materials cannot satisfy the requirements for high heat storage/release rate and great thermal energy density simultaneously. Based on this, the novel hierarchical porous frameworks materials are explored to overcome these obstacles. For this purpose, some scientific problems, opportunities, and challenges are summarized at the end of this paper.
-
Keywords:
- phase change /
- nano-assembled materials /
- thermal design /
- frontiers
[1] Feng D, Feng Y, Qiu L, Li P, Zang Y, Zou H, Yu Z, Zhang X 2019 Renew. Sust. Energ. Rev. 109 578Google Scholar
[2] Feng D, Li P, Feng Y, Yan Y, Zhang X 2021 Micropor. Mesopor. Mat. 310 110631Google Scholar
[3] Li A, Wang J, Dong C, Dong W, Atinafu D, Chen X, Gao H, Wang G. 2018 Appl. Energ. 217 369Google Scholar
[4] Yu Z, Feng Y, Feng D, Zhang X 2021 Micropor. Mesopor. Mat. 312 110781Google Scholar
[5] Feng D, Feng Y, Zang Y, Li P, Zhang X 2019 Micropor. Mesopor. Mat. 280 124Google Scholar
[6] Zhang J, Feng Y, Yuan H, Feng D, Zhang X, Wang G 2015 Comp. Mater. Sci. 109 300Google Scholar
[7] Feng D, Feng Y, Li P, Zang Y, Wang C, Zhang X 2020 Micropor. Mesopor. Mat. 292 109756Google Scholar
[8] Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, Zhang X, Li Q 2019 Carbon 141 497Google Scholar
[9] Xu D, Hanus R, Xiao Y, Wang S, Synder G, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar
[10] Qiu L, Guo P, Kong Q, Tan C, Liang K, Wei J, Tey J, Feng Y, Zhang X, Tay B 2019 Carbon 145 725Google Scholar
[11] Xu Y, Wang X, Hao Q 2021 Compos. Commum. 24 100617Google Scholar
[12] Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X 2016 ACS Nano. 10 7792Google Scholar
[13] Zhou Y, Wu S, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. Mass. Tran. 7 4Google Scholar
[14] Chang G, Sun F, Wang L, Che Z, Wang X, Wang J, Kim M, Zheng H 2019 ACS Appl. Mater. Inter. 11 26507Google Scholar
[15] Wang S, Xu D, Gurunathan R, Snyder G, Hao Q 2020 J. Materiomics. 6 248Google Scholar
[16] Hao Q, Garg J 2021 ES Mater. Manuf. Mass. Tran. 14 36Google Scholar
[17] Feng D, Zang Y, Li P, Feng Y, Yan Y, Zhang X 2021 Compos. Sci. Technol. 210 108832Google Scholar
[18] Tang J, Yang M, Yu F, Chen X, Tan L, Wang G 2017 Appl. Energ. 187 514Google Scholar
[19] Wang H, Xu Q, Luo Q, Song Y, Tian Y, Chen M, Xuan Y, Jin Y, Jia Y, Li Y, Ding Y 2021 Int. J. Heat. Mass. Tran. 175 121405Google Scholar
[20] Feng D, Nan J, Feng Y, Yan Y, Zhang X 2021 Int. J. Heat. Mass. Tran. 179 121748Google Scholar
-
[1] Feng D, Feng Y, Qiu L, Li P, Zang Y, Zou H, Yu Z, Zhang X 2019 Renew. Sust. Energ. Rev. 109 578Google Scholar
[2] Feng D, Li P, Feng Y, Yan Y, Zhang X 2021 Micropor. Mesopor. Mat. 310 110631Google Scholar
[3] Li A, Wang J, Dong C, Dong W, Atinafu D, Chen X, Gao H, Wang G. 2018 Appl. Energ. 217 369Google Scholar
[4] Yu Z, Feng Y, Feng D, Zhang X 2021 Micropor. Mesopor. Mat. 312 110781Google Scholar
[5] Feng D, Feng Y, Zang Y, Li P, Zhang X 2019 Micropor. Mesopor. Mat. 280 124Google Scholar
[6] Zhang J, Feng Y, Yuan H, Feng D, Zhang X, Wang G 2015 Comp. Mater. Sci. 109 300Google Scholar
[7] Feng D, Feng Y, Li P, Zang Y, Wang C, Zhang X 2020 Micropor. Mesopor. Mat. 292 109756Google Scholar
[8] Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, Zhang X, Li Q 2019 Carbon 141 497Google Scholar
[9] Xu D, Hanus R, Xiao Y, Wang S, Synder G, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar
[10] Qiu L, Guo P, Kong Q, Tan C, Liang K, Wei J, Tey J, Feng Y, Zhang X, Tay B 2019 Carbon 145 725Google Scholar
[11] Xu Y, Wang X, Hao Q 2021 Compos. Commum. 24 100617Google Scholar
[12] Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X 2016 ACS Nano. 10 7792Google Scholar
[13] Zhou Y, Wu S, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. Mass. Tran. 7 4Google Scholar
[14] Chang G, Sun F, Wang L, Che Z, Wang X, Wang J, Kim M, Zheng H 2019 ACS Appl. Mater. Inter. 11 26507Google Scholar
[15] Wang S, Xu D, Gurunathan R, Snyder G, Hao Q 2020 J. Materiomics. 6 248Google Scholar
[16] Hao Q, Garg J 2021 ES Mater. Manuf. Mass. Tran. 14 36Google Scholar
[17] Feng D, Zang Y, Li P, Feng Y, Yan Y, Zhang X 2021 Compos. Sci. Technol. 210 108832Google Scholar
[18] Tang J, Yang M, Yu F, Chen X, Tan L, Wang G 2017 Appl. Energ. 187 514Google Scholar
[19] Wang H, Xu Q, Luo Q, Song Y, Tian Y, Chen M, Xuan Y, Jin Y, Jia Y, Li Y, Ding Y 2021 Int. J. Heat. Mass. Tran. 175 121405Google Scholar
[20] Feng D, Nan J, Feng Y, Yan Y, Zhang X 2021 Int. J. Heat. Mass. Tran. 179 121748Google Scholar
计量
- 文章访问数: 7279
- PDF下载量: 316
- 被引次数: 0