搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热智能材料及其在空间热控中的应用

曹炳阳 张梓彤

引用本文:
Citation:

热智能材料及其在空间热控中的应用

曹炳阳, 张梓彤

Thermal smart materials and their applications in space thermal control system

Cao Bing-Yang, Zhang Zi-Tong
PDF
HTML
导出引用
  • 空间技术等高新领域对智能高效的热控制技术的需求日益提高, 而实现智能热控制技术的关键是要实现材料的热物性智能调控, 于是热导率可响应外场变化的热智能材料成为了研究的焦点. 本文梳理了热智能材料的最新研究进展, 从调控机理、调控幅度、应用价值等角度出发, 介绍了纳米颗粒悬浮液、相变材料、软物质材料、受电化学调控的层状材料和受特定外场调控的材料等不同种类热智能材料的研究现状, 以及以热智能材料为基础的智能热控部件在空间技术等领域的应用. 最后, 本文对热智能材料未来的研究方向进行了探讨.
    Effective thermal control technologies are increasingly demanded in various application scenarios like spacecraft systems. Thermal conductivities of materials play a key role in thermal control systems, and one of the basic requirements for the materials is their reversibly tunable thermal properties. In this paper, we briefly review the recent research progress of the thermal smart materials in the respects of fundamental physical mechanisms, thermal switching ratio, and application value. We focus on the following typical thermal smart materials: nanoparticle suspensions, phase change materials, soft materials, layered materials tuned by electrochemistry, and materials tuned by specific external field. After surveying the fundamental mechanisms of thermal smart devices, we present their applications in spacecraft and other fields. Finally, we discuss the difficulties and challenges in studying the thermal smart materials, and also point out an outlook on their future development.
      通信作者: 曹炳阳, caoby@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51825601, U20A20301)资助的课题.
      Corresponding author: Cao Bing-Yang, caoby@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51825601, U20A20301).
    [1]

    Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 41304Google Scholar

    [2]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [3]

    Zhu W, Deng Y, Wang Y, Shen S, Gulfam R 2016 Energy 100 91Google Scholar

    [4]

    侯增棋, 胡金刚 2007 航天器热控制技术 (第 2 版) (北京: 中国科学技术出版社) 第1−11页

    Hou Z Q, Hu J G 2007 Thermal Control Technology of Spacecraft (2nd Ed.) (Beijing: Science and technology of China press) pp1−11 (in Chinese)

    [5]

    Baughman R H 2002 Science 297 787Google Scholar

    [6]

    Geim A K 2009 Science 324 1530Google Scholar

    [7]

    Kleinstr­­­euer C, Feng Y 2011 Nanoscale Res. Lett. 6 229Google Scholar

    [8]

    Pil Jang S, Choi S U S 2007 J Heat Trans. 129 617Google Scholar

    [9]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [10]

    Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120Google Scholar

    [11]

    Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 034703Google Scholar

    [12]

    董若宇, 曹鹏, 曹桂兴, 胡帼 杰, 曹炳阳 2017 物理学报 66 014702Google Scholar

    [13]

    Zhang Z T, Dong R Y, Qiao D S, Cao B Y 2020 Nanotechnology 31 465403Google Scholar

    [14]

    Philip J, Shima P D, Raj B 2007 Appl. Phys. Lett. 91 203108Google Scholar

    [15]

    Philip J, Shima P D, Raj B 2008 Appl. Phys. Lett. 92 043108Google Scholar

    [16]

    Shima P D, Philip J, Raj B 2009 Appl. Phys. Lett. 95 133112Google Scholar

    [17]

    Sun P C, Huang Y, Zheng R T, Cheng G A, Wan Q M, Ding Y L 2015 Mater. Lett. 149 92Google Scholar

    [18]

    Sharma A, Shukla A, Chen C R, Wu T N 2014 Sustainable Energy Technol. Assess. 7 17Google Scholar

    [19]

    Berglund C N, Guggenheim H J 1969 Phys. Rev. 185 1022Google Scholar

    [20]

    Kizuka H, Yagi T, Jia J, Yamashita Y, Nakamura S, Taketoshi N, Shigesato Y 2015 Jpn. J. Appl. Phys. 54 053201Google Scholar

    [21]

    Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, Wu J 2017 Science 355 371Google Scholar

    [22]

    Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904Google Scholar

    [23]

    Reifenberg J P, Panzer M A, Kim S, Gibby A M, Zhang Y, Wong S, Wong H S P, Pop E, Goodson K E 2007 Appl. Phys. Lett. 91 111904Google Scholar

    [24]

    Yang L, Cao B Y 2021 J. Phys. D:Appl. Phys. 54 505302Google Scholar

    [25]

    Batdalov A B, Aliev A M, Khanov L N, Buchel’nikov v d, Sokolovskii V V, Koledov V V, Shavrov V G, Mashirov A V, Dil’mieva E T 2016 J. Exp. Theor. Phys. 122 874Google Scholar

    [26]

    Zheng Q, Zhu G, Diao Z, Banerjee D, Cahill D G 2019 Adv. Eng. Mater. 21 1801342Google Scholar

    [27]

    Zheng R, Gao J, Wang J, Chen G 2011 Nat. Commun. 2 550Google Scholar

    [28]

    Angayarkanni S A, Philip J 2014 J. Phys. Chem. C 118 13972Google Scholar

    [29]

    Angayarkanni S A, Philip J 2015 J. Appl. Phys. 118 094306Google Scholar

    [30]

    Harish S, Ishikawa K, Chiashi S, Shiomi J, Maruyama S 2013 J. Phys. Chem. C 117 15409Google Scholar

    [31]

    Sun P C, Wu Y L, Gao J W, Cheng G A, Chen G, Zheng R T 2013 Adv. Mater. 25 4938Google Scholar

    [32]

    Warzoha R J, Weigand R M, Fleischer A S 2015 Appl. Energy 137 716Google Scholar

    [33]

    Wu Y, Yan X, Meng P, Sun P, Cheng G, Zheng R 2015 Carbon 94 417Google Scholar

    [34]

    Issi J P, Heremans J, Dresselhaus M S 1983 Phys. Rev. B 27 1333Google Scholar

    [35]

    Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D, Cahill D G 2016 Nat. Commun. 7 13211Google Scholar

    [36]

    Qian X, Gu X, Dresselhaus M S, Yang R 2016 J. Phys. Chem. Lett. 7 4744Google Scholar

    [37]

    Sood A, Xiong F, Chen S, Wang H, Selli D, Zhang J, McClellan C J, Sun J, Donadio D, Cui Y, Pop E, Goodson K E 2018 Nat. Commun. 9 1267Google Scholar

    [38]

    Cho J, Losego M D, Zhang H G, Kim H, Zuo J, Petrov I, Cahill D G, Braun P V 2014 Nat. Commun. 5 4035Google Scholar

    [39]

    Kang J S, Ke M, Hu Y 2017 Nano Lett. 17 1431Google Scholar

    [40]

    Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G, Yildiz B 2020 Nat. Mater. 19 655Google Scholar

    [41]

    Barnes H A 2000 Chem. Eng. J. 79 84Google Scholar

    [42]

    Hu H Q, Gopinadhan M, Osuji C O 2014 Soft Matter 10 3867Google Scholar

    [43]

    Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V, Cahill D G 2019 Proc. Natl. Acad. Sci. 116 5973Google Scholar

    [44]

    Li C, Ma Y, Tian Z 2018 ACS Macro Lett. 7 53Google Scholar

    [45]

    Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar

    [46]

    Zhang T, Luo T 2013 ACS Nano 7 7592Google Scholar

    [47]

    Shin J, Kang M, Tsai T, Leal C, Braun P V, Cahill D G 2016 ACS Macro Lett. 5 955Google Scholar

    [48]

    Tomko J A, Pena-Francesch A, Jung H, Tyagi M, Allen B D, Demirel M C, Hopkins P E 2018 Nat. Nanotechnol. 13 959Google Scholar

    [49]

    Feng H, Tang N, An M, Guo R L, Ma D K, Yu X X, Zang J F, Yang N 2019 J. Phys. Chem. C. 123 31003Google Scholar

    [50]

    Hopkins P E, Adamo C, Ye L H, Huey B D, Lee S R, Schlom D G, Ihlefeld J F 2013 Appl. Phys. Lett. 102 121903Google Scholar

    [51]

    Ihlefeld J F, Foley B M, Scrymgeour D A, Michael J R, McKenzie B B, Medlin D L, Wallace M, Trolier-McKinstry S, Hopkins P E 2015 Nano Lett. 15 1791Google Scholar

    [52]

    Chynoweth A G 1956 J. Appl. Phys. 27 78Google Scholar

    [53]

    Kalaidjiev K N, Mikhailov M P, Bozhanov G I, St. Stoyanov R 1982 Phys. Status Solidi A 69 K163Google Scholar

    [54]

    Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N 2021 Nano Energy 82 105749

    [55]

    Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A 9 24472Google Scholar

    [56]

    Ziman J M 1960 Electrons and Phonons (Britain: Oxford University Press) pp483−523

    [57]

    Yim W M, Amith A 1972 Solid-State Electron. 15 1141Google Scholar

    [58]

    Yang F Y 1999 Science 284 1335Google Scholar

    [59]

    Kimling J, Wilson R B, Rott K, Kimling J, Reiss G, Cahill D G 2015 Phys. Rev. B 91 144405Google Scholar

    [60]

    Ismail K, Nelson S F, Chu J O, Meyerson B S 1993 Appl. Phys. Lett. 63 660Google Scholar

    [61]

    Chu M, Sun Y K, Aghoram U, Thompson S E 2009 Annu. Rev. Mater. Res. 39 203Google Scholar

    [62]

    Vogelsang T, Hofmann K R 1993 Appl. Phys. Lett. 63 186Google Scholar

    [63]

    Li X, Maute K, Dunn M L, Yang R 2010 Phys. Rev. B 81 245318Google Scholar

    [64]

    Meng H, Ma D, Yu X, Zhang L, Sun Z, Yang N 2019 Int. J. Heat Mass Transf. 145 118719Google Scholar

    [65]

    Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transf. 180 121773Google Scholar

    [66]

    Wan X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transf. 180 121821Google Scholar

    [67]

    Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [68]

    Yu D, Liao Y, Song Y, Wang S, Wan H, Zeng Y, Yin T, Yang W, He Z 2020 Adv. Sci. 7 2000177Google Scholar

    [69]

    Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A, Ruan X 2021 Nat. Commun. 12 163Google Scholar

    [70]

    Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju Y S, Pei Q 2017 Science 357 1130Google Scholar

    [71]

    Smullin S J, Wang Y, Schwartz D E 2015 Appl. Phys. Lett. 107 093903Google Scholar

    [72]

    McKay I S, Wang E N 2013 Energy 57 632Google Scholar

    [73]

    Puga J B, Bordalo B D, Silva D J, Dias M M, Belo J H, Araújo J P, Oliveira J C R E, Pereira A M, Ventura J 2017 Nano Energy 31 278Google Scholar

    [74]

    Yang N, Ni X X, Jiang J W, Li B W 2012 Appl. Phys. Lett. 100 093107Google Scholar

    [75]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [76]

    Cao B Y, Qiao D S 2018 ZL201810298324.6

    [77]

    胡帼杰, 曹桂兴, 乔德山, 曹炳阳 2019 工程热物理学报 40 1380

    Hu G J, Cao G X, Qiao D S, Cao B Y 2019 J. Eng. Thermophys. 40 1380

  • 图 1  开关式及连续调节式热智能材料示意图

    Fig. 1.  Skematic of switching and gradual thermal smart materials.

    图 2  不同热智能材料响应机理示意图 (a)纳米颗粒悬浮液; (b)相变材料; (c)层状材料; (d)软物质材料; (e)受电磁场调控的材料

    Fig. 2.  Skematic of physical mechanisms of thermal smart materials: (a) Nanoparticle suspensions; (b) phase change materials; (c) layered materials; (d) soft materials; (e) materials tuned by electric and magnetic field.

  • [1]

    Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 41304Google Scholar

    [2]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [3]

    Zhu W, Deng Y, Wang Y, Shen S, Gulfam R 2016 Energy 100 91Google Scholar

    [4]

    侯增棋, 胡金刚 2007 航天器热控制技术 (第 2 版) (北京: 中国科学技术出版社) 第1−11页

    Hou Z Q, Hu J G 2007 Thermal Control Technology of Spacecraft (2nd Ed.) (Beijing: Science and technology of China press) pp1−11 (in Chinese)

    [5]

    Baughman R H 2002 Science 297 787Google Scholar

    [6]

    Geim A K 2009 Science 324 1530Google Scholar

    [7]

    Kleinstr­­­euer C, Feng Y 2011 Nanoscale Res. Lett. 6 229Google Scholar

    [8]

    Pil Jang S, Choi S U S 2007 J Heat Trans. 129 617Google Scholar

    [9]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [10]

    Dong R Y, Cao B Y 2014 Sci. Rep. 4 6120Google Scholar

    [11]

    Cao B Y, Dong R Y 2014 J. Chem. Phys. 140 034703Google Scholar

    [12]

    董若宇, 曹鹏, 曹桂兴, 胡帼 杰, 曹炳阳 2017 物理学报 66 014702Google Scholar

    [13]

    Zhang Z T, Dong R Y, Qiao D S, Cao B Y 2020 Nanotechnology 31 465403Google Scholar

    [14]

    Philip J, Shima P D, Raj B 2007 Appl. Phys. Lett. 91 203108Google Scholar

    [15]

    Philip J, Shima P D, Raj B 2008 Appl. Phys. Lett. 92 043108Google Scholar

    [16]

    Shima P D, Philip J, Raj B 2009 Appl. Phys. Lett. 95 133112Google Scholar

    [17]

    Sun P C, Huang Y, Zheng R T, Cheng G A, Wan Q M, Ding Y L 2015 Mater. Lett. 149 92Google Scholar

    [18]

    Sharma A, Shukla A, Chen C R, Wu T N 2014 Sustainable Energy Technol. Assess. 7 17Google Scholar

    [19]

    Berglund C N, Guggenheim H J 1969 Phys. Rev. 185 1022Google Scholar

    [20]

    Kizuka H, Yagi T, Jia J, Yamashita Y, Nakamura S, Taketoshi N, Shigesato Y 2015 Jpn. J. Appl. Phys. 54 053201Google Scholar

    [21]

    Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, Wu J 2017 Science 355 371Google Scholar

    [22]

    Lyeo H K, Cahill D G, Lee B S, Abelson J R, Kwon M H, Kim K B, Bishop S G, Cheong B K 2006 Appl. Phys. Lett. 89 151904Google Scholar

    [23]

    Reifenberg J P, Panzer M A, Kim S, Gibby A M, Zhang Y, Wong S, Wong H S P, Pop E, Goodson K E 2007 Appl. Phys. Lett. 91 111904Google Scholar

    [24]

    Yang L, Cao B Y 2021 J. Phys. D:Appl. Phys. 54 505302Google Scholar

    [25]

    Batdalov A B, Aliev A M, Khanov L N, Buchel’nikov v d, Sokolovskii V V, Koledov V V, Shavrov V G, Mashirov A V, Dil’mieva E T 2016 J. Exp. Theor. Phys. 122 874Google Scholar

    [26]

    Zheng Q, Zhu G, Diao Z, Banerjee D, Cahill D G 2019 Adv. Eng. Mater. 21 1801342Google Scholar

    [27]

    Zheng R, Gao J, Wang J, Chen G 2011 Nat. Commun. 2 550Google Scholar

    [28]

    Angayarkanni S A, Philip J 2014 J. Phys. Chem. C 118 13972Google Scholar

    [29]

    Angayarkanni S A, Philip J 2015 J. Appl. Phys. 118 094306Google Scholar

    [30]

    Harish S, Ishikawa K, Chiashi S, Shiomi J, Maruyama S 2013 J. Phys. Chem. C 117 15409Google Scholar

    [31]

    Sun P C, Wu Y L, Gao J W, Cheng G A, Chen G, Zheng R T 2013 Adv. Mater. 25 4938Google Scholar

    [32]

    Warzoha R J, Weigand R M, Fleischer A S 2015 Appl. Energy 137 716Google Scholar

    [33]

    Wu Y, Yan X, Meng P, Sun P, Cheng G, Zheng R 2015 Carbon 94 417Google Scholar

    [34]

    Issi J P, Heremans J, Dresselhaus M S 1983 Phys. Rev. B 27 1333Google Scholar

    [35]

    Zhu G, Liu J, Zheng Q, Zhang R, Li D, Banerjee D, Cahill D G 2016 Nat. Commun. 7 13211Google Scholar

    [36]

    Qian X, Gu X, Dresselhaus M S, Yang R 2016 J. Phys. Chem. Lett. 7 4744Google Scholar

    [37]

    Sood A, Xiong F, Chen S, Wang H, Selli D, Zhang J, McClellan C J, Sun J, Donadio D, Cui Y, Pop E, Goodson K E 2018 Nat. Commun. 9 1267Google Scholar

    [38]

    Cho J, Losego M D, Zhang H G, Kim H, Zuo J, Petrov I, Cahill D G, Braun P V 2014 Nat. Commun. 5 4035Google Scholar

    [39]

    Kang J S, Ke M, Hu Y 2017 Nano Lett. 17 1431Google Scholar

    [40]

    Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G, Yildiz B 2020 Nat. Mater. 19 655Google Scholar

    [41]

    Barnes H A 2000 Chem. Eng. J. 79 84Google Scholar

    [42]

    Hu H Q, Gopinadhan M, Osuji C O 2014 Soft Matter 10 3867Google Scholar

    [43]

    Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V, Cahill D G 2019 Proc. Natl. Acad. Sci. 116 5973Google Scholar

    [44]

    Li C, Ma Y, Tian Z 2018 ACS Macro Lett. 7 53Google Scholar

    [45]

    Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar

    [46]

    Zhang T, Luo T 2013 ACS Nano 7 7592Google Scholar

    [47]

    Shin J, Kang M, Tsai T, Leal C, Braun P V, Cahill D G 2016 ACS Macro Lett. 5 955Google Scholar

    [48]

    Tomko J A, Pena-Francesch A, Jung H, Tyagi M, Allen B D, Demirel M C, Hopkins P E 2018 Nat. Nanotechnol. 13 959Google Scholar

    [49]

    Feng H, Tang N, An M, Guo R L, Ma D K, Yu X X, Zang J F, Yang N 2019 J. Phys. Chem. C. 123 31003Google Scholar

    [50]

    Hopkins P E, Adamo C, Ye L H, Huey B D, Lee S R, Schlom D G, Ihlefeld J F 2013 Appl. Phys. Lett. 102 121903Google Scholar

    [51]

    Ihlefeld J F, Foley B M, Scrymgeour D A, Michael J R, McKenzie B B, Medlin D L, Wallace M, Trolier-McKinstry S, Hopkins P E 2015 Nano Lett. 15 1791Google Scholar

    [52]

    Chynoweth A G 1956 J. Appl. Phys. 27 78Google Scholar

    [53]

    Kalaidjiev K N, Mikhailov M P, Bozhanov G I, St. Stoyanov R 1982 Phys. Status Solidi A 69 K163Google Scholar

    [54]

    Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N 2021 Nano Energy 82 105749

    [55]

    Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A 9 24472Google Scholar

    [56]

    Ziman J M 1960 Electrons and Phonons (Britain: Oxford University Press) pp483−523

    [57]

    Yim W M, Amith A 1972 Solid-State Electron. 15 1141Google Scholar

    [58]

    Yang F Y 1999 Science 284 1335Google Scholar

    [59]

    Kimling J, Wilson R B, Rott K, Kimling J, Reiss G, Cahill D G 2015 Phys. Rev. B 91 144405Google Scholar

    [60]

    Ismail K, Nelson S F, Chu J O, Meyerson B S 1993 Appl. Phys. Lett. 63 660Google Scholar

    [61]

    Chu M, Sun Y K, Aghoram U, Thompson S E 2009 Annu. Rev. Mater. Res. 39 203Google Scholar

    [62]

    Vogelsang T, Hofmann K R 1993 Appl. Phys. Lett. 63 186Google Scholar

    [63]

    Li X, Maute K, Dunn M L, Yang R 2010 Phys. Rev. B 81 245318Google Scholar

    [64]

    Meng H, Ma D, Yu X, Zhang L, Sun Z, Yang N 2019 Int. J. Heat Mass Transf. 145 118719Google Scholar

    [65]

    Meng H, Maruyama S, Xiang R, Yang N 2021 Int. J. Heat Mass Transf. 180 121773Google Scholar

    [66]

    Wan X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transf. 180 121821Google Scholar

    [67]

    Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [68]

    Yu D, Liao Y, Song Y, Wang S, Wan H, Zeng Y, Yin T, Yang W, He Z 2020 Adv. Sci. 7 2000177Google Scholar

    [69]

    Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A, Ruan X 2021 Nat. Commun. 12 163Google Scholar

    [70]

    Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju Y S, Pei Q 2017 Science 357 1130Google Scholar

    [71]

    Smullin S J, Wang Y, Schwartz D E 2015 Appl. Phys. Lett. 107 093903Google Scholar

    [72]

    McKay I S, Wang E N 2013 Energy 57 632Google Scholar

    [73]

    Puga J B, Bordalo B D, Silva D J, Dias M M, Belo J H, Araújo J P, Oliveira J C R E, Pereira A M, Ventura J 2017 Nano Energy 31 278Google Scholar

    [74]

    Yang N, Ni X X, Jiang J W, Li B W 2012 Appl. Phys. Lett. 100 093107Google Scholar

    [75]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [76]

    Cao B Y, Qiao D S 2018 ZL201810298324.6

    [77]

    胡帼杰, 曹桂兴, 乔德山, 曹炳阳 2019 工程热物理学报 40 1380

    Hu G J, Cao G X, Qiao D S, Cao B Y 2019 J. Eng. Thermophys. 40 1380

  • [1] 徐浩哲, 徐象繁. Al2O3基导热聚合物中的热逾渗网络. 物理学报, 2023, 72(2): 024401. doi: 10.7498/aps.72.20221400
    [2] 李耀隆, 李哲, 李松远, 张任良. 层间共价键和拉伸应变对双层石墨烯纳米带热导率的调控. 物理学报, 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [3] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] 安盟, 孙旭辉, 陈东升, 杨诺. 石墨烯基复合热界面材料导热性能研究进展. 物理学报, 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [5] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [6] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应. 物理学报, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [7] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [8] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [9] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [10] 张飞鹏, 段坤杰, 曾宏, 张久兴. Ba/Ag双掺杂对Ca3Co4O9基热电氧化物热传输性能的影响. 物理学报, 2013, 62(18): 187201. doi: 10.7498/aps.62.187201
    [11] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [12] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [13] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究. 物理学报, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [14] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [15] 刘铖铖, 曹全喜. Y3Al5O12的热输运性质的第一性原理研究. 物理学报, 2010, 59(4): 2697-2702. doi: 10.7498/aps.59.2697
    [16] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [17] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [18] 高惠平, 李 波, 余 勇, 阮可青, 吴柏枚. Nd1.67Sr0.33NiO4中的热导反常. 物理学报, 2004, 53(11): 3853-3857. doi: 10.7498/aps.53.3853
    [19] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 樊 荣, 陈仙辉, 曹烈兆. 双能隙超导体MgB2的热导. 物理学报, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [20] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
计量
  • 文章访问数:  6072
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2021-11-29
  • 上网日期:  2021-12-24
  • 刊出日期:  2022-01-05

/

返回文章
返回