搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究

伍君博 唐新桂 贾振华 陈东阁 蒋艳平 刘秋香

引用本文:
Citation:

钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究

伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香

Influences of Y- and La-dopant on the thermal conductive properties and dielectric relaxation of Al2O3-based ceramics

Wu Jun-Bo, Tang Xin-Gui, Jia Zhen-Hua, Chen Dong-Ge, Jiang Yan-Ping, Liu Qiu-Xiang
PDF
导出引用
  • 采用氧化物固相反应法,制备出纯氧化铝陶瓷及其分别掺杂稀土元素钇和镧的陶瓷样品. 测量了样品的结构、介电特性和热导性能;研究了烧结温度对掺杂不同稀土元素的陶瓷样品的性能的影响. X射线衍射结果表明1500℃烧结后陶瓷样品形成了单一的固溶体. 而氧化铝的热导率达到8.60 W/(m·K),样品的介电性能稳定. 我们发现掺杂Y3+和La3+的氧化铝陶瓷存在介电弛豫现象,并对该现象进行了机理分析.
    Al2O3 ceramics doping with Y3+ and La3+ are synthesized by conventional solid state reaction method. The structures, thermal conductivities properties and the effects of sintering temperature on the electrical properties of the samples are measured. X-ray diffraction results indicate that all the ceramics are formed to be of pure solid solution when the samples are sintered at 1500℃. Thermal conductivities of Al2O3 ceramics reach up to 8.60 W/(m· K). All the ceramics show temperature-stable dielectric characteristics. Typical dielectric relaxation behaviors are observed in Y- and La-doped Al2O3 ceramics, and the relaxation mechanism is also analyzed.
    • 基金项目: 国家自然科学基金(批准号: 10774030); 广东省科技计划项目(批准号: 2010B090400141)和广州市科技计划项目(批准号: 2010Y1-C221)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10774030), the Science and Technology Program of Guangdong Province, China (Grant No. 2010B090400141), and the Science and Technology Project of Guangzhou City, China (Grant No. 2010Y1-C221).
    [1]

    Svilainis L 2008 Displays 29 506

    [2]

    Kee R J, Almand B B, Blasi J M, Rosen B L, Hartmann M, Sullivan N P, Zhu H Y, Manerbino A R, Menzer S, Grover Coors W, Martin J L 2011 Appl. Thermal. Eng. 31 2004

    [3]

    Yin L Q, Yang L Q, Yang W Q, Guo Y S, Ma K J, Li S Z, Zhang J H 2010 Solid-State Electron 54 1520

    [4]

    Peng R, Zhou H P, Ning X S, Xu W, Lin Y B 2002 J. Inorg. Mater. 17 731 (in Chinese) [彭榕, 周和平, 宁晓山, 徐伟, 林渊博 2002 无机材料学报 17 731]

    [5]

    Mu B C, Sun X D 2002 J. Chin. Rare Earth Soc. 20 z104 (in Chinese) [穆柏春, 孙旭东 2002 中国稀土学报 20 z104]

    [6]

    Yang Q H, Zeng Z J, Xu J, Su L B 2006 Acta Phys. Sin. 55 2726 (in Chinese) [杨秋红, 曾智江, 徐军, 苏良碧 2006 物理学报 55 2726]

    [7]

    Yao Y J, Qiu T, Jiao B X, Shen C Y 2005 J. Chin. Rare Earth Soc. 23 158 (in Chinese) [姚义俊, 邱泰, 焦宝祥, 沈春英 2005 中国稀土学报 23 158]

    [8]

    Chen D G, Tang X G, Jia Z H, Wu J B, Xiong H F 2011 Acta Phys. Sin. 60 127701 (in Chinese) [陈东阁, 唐新桂, 贾政华, 伍君博, 熊惠芳 2011 物理学报 60 127701]

    [9]

    Huang L P, Zhao H F, Fu X R, Dong L J 1989 J. Inorg. Mater. 4 217 (in Chinese) [黄莉萍, 赵惠芬, 符锡仁, 董良金 1989 无机材料学报 4 217]

    [10]

    Zhou H P, Zhou J S 1995 J. Inorg. Mater. 10 439 (in Chinese) [周和平, 周劲松 1995 无机材料学报 10 439]

    [11]

    Ferrarelli M C, Sinclair D C, West A R, Dabkowska H A, Dabkowski A, Luke G M 2009 J. Mater. Chem. 19 5916

    [12]

    Sarkar S, Jana P K, Chaudhuri B K 2008 Appl. Phys. Lett. 92 022905

    [13]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341

    [14]

    Sinclair D C, West A R 1989 Phys. Rev. B 39 13486

    [15]

    Kim J S, Choi B C, Jeong J H, Chung S T, Cho S B, Kim I W 2009 J. Kor. Phys. Soc. 55 879

    [16]

    Elissalde C, Ravez J 2001 J. Mater. Chem. 11 1957

    [17]

    Kuang S J, Tang X G, Li L Y, Jiang Y P, Liu Q X 2009 Scripta Mater. 61 68

    [18]

    Tang X G, Wang J, Wang X X, Chan H L W 2004 Solid State Commun. 131 163

  • [1]

    Svilainis L 2008 Displays 29 506

    [2]

    Kee R J, Almand B B, Blasi J M, Rosen B L, Hartmann M, Sullivan N P, Zhu H Y, Manerbino A R, Menzer S, Grover Coors W, Martin J L 2011 Appl. Thermal. Eng. 31 2004

    [3]

    Yin L Q, Yang L Q, Yang W Q, Guo Y S, Ma K J, Li S Z, Zhang J H 2010 Solid-State Electron 54 1520

    [4]

    Peng R, Zhou H P, Ning X S, Xu W, Lin Y B 2002 J. Inorg. Mater. 17 731 (in Chinese) [彭榕, 周和平, 宁晓山, 徐伟, 林渊博 2002 无机材料学报 17 731]

    [5]

    Mu B C, Sun X D 2002 J. Chin. Rare Earth Soc. 20 z104 (in Chinese) [穆柏春, 孙旭东 2002 中国稀土学报 20 z104]

    [6]

    Yang Q H, Zeng Z J, Xu J, Su L B 2006 Acta Phys. Sin. 55 2726 (in Chinese) [杨秋红, 曾智江, 徐军, 苏良碧 2006 物理学报 55 2726]

    [7]

    Yao Y J, Qiu T, Jiao B X, Shen C Y 2005 J. Chin. Rare Earth Soc. 23 158 (in Chinese) [姚义俊, 邱泰, 焦宝祥, 沈春英 2005 中国稀土学报 23 158]

    [8]

    Chen D G, Tang X G, Jia Z H, Wu J B, Xiong H F 2011 Acta Phys. Sin. 60 127701 (in Chinese) [陈东阁, 唐新桂, 贾政华, 伍君博, 熊惠芳 2011 物理学报 60 127701]

    [9]

    Huang L P, Zhao H F, Fu X R, Dong L J 1989 J. Inorg. Mater. 4 217 (in Chinese) [黄莉萍, 赵惠芬, 符锡仁, 董良金 1989 无机材料学报 4 217]

    [10]

    Zhou H P, Zhou J S 1995 J. Inorg. Mater. 10 439 (in Chinese) [周和平, 周劲松 1995 无机材料学报 10 439]

    [11]

    Ferrarelli M C, Sinclair D C, West A R, Dabkowska H A, Dabkowski A, Luke G M 2009 J. Mater. Chem. 19 5916

    [12]

    Sarkar S, Jana P K, Chaudhuri B K 2008 Appl. Phys. Lett. 92 022905

    [13]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341

    [14]

    Sinclair D C, West A R 1989 Phys. Rev. B 39 13486

    [15]

    Kim J S, Choi B C, Jeong J H, Chung S T, Cho S B, Kim I W 2009 J. Kor. Phys. Soc. 55 879

    [16]

    Elissalde C, Ravez J 2001 J. Mater. Chem. 11 1957

    [17]

    Kuang S J, Tang X G, Li L Y, Jiang Y P, Liu Q X 2009 Scripta Mater. 61 68

    [18]

    Tang X G, Wang J, Wang X X, Chan H L W 2004 Solid State Commun. 131 163

  • [1] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [2] 陈诚, 卢建安, 杜微, 王伟, 毛翔宇, 陈小兵. Nd含量对Bi6−xNdxFe1.4Ni0.6Ti3O18多晶材料多铁性的影响. 物理学报, 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [3] 毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵. Co含量对Bi6Fe2-xCoxTi3O18样品多铁性的影响. 物理学报, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [4] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟. 物理学报, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [5] 成鹏飞, 王辉, 李盛涛. CaCu3Ti4O12陶瓷的介电特性与弛豫机理. 物理学报, 2013, 62(5): 057701. doi: 10.7498/aps.62.057701
    [6] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [7] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [8] 刘鹏, 张丹. La诱导(Pb(1-3x/2)Lax)(Zr0.5Sn0.3Ti0.2)O3反铁电介电弛豫研究. 物理学报, 2011, 60(1): 017701. doi: 10.7498/aps.60.017701
    [9] 陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳. Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究. 物理学报, 2011, 60(12): 127701. doi: 10.7498/aps.60.127701
    [10] 张崇辉, 徐卓, 高俊杰, 王斌科. 等静压下0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3陶瓷的介电性能研究. 物理学报, 2009, 58(9): 6500-6505. doi: 10.7498/aps.58.6500
    [11] 毕志伟, 冯倩, 郝跃, 岳远征, 张忠芬, 毛维, 杨丽媛, 胡贵州. Al2O3介质层厚度对AlGaN/GaN金属氧化物半导体-高电子迁移率晶体管性能的影响. 物理学报, 2009, 58(10): 7211-7215. doi: 10.7498/aps.58.7211
    [12] 周丽宏, 张崇宏, 李炳生, 杨义涛, 宋 银. 注入Ar+的蓝宝石晶体退火前后光致发光谱的分析. 物理学报, 2008, 57(4): 2562-2566. doi: 10.7498/aps.57.2562
    [13] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性. 物理学报, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [14] 冯 倩, 郝 跃, 岳远征. Al2O3绝缘层的AlGaN/GaN MOSHEMT器件研究. 物理学报, 2008, 57(3): 1886-1890. doi: 10.7498/aps.57.1886
    [15] 宋 银, 王志光, 魏孔芳, 张崇宏, 刘纯宝, 臧 航, 周丽宏. 退火对He注入及随后208Pb27+辐照的Al2O3单晶PL谱的影响. 物理学报, 2007, 56(1): 551-555. doi: 10.7498/aps.56.551
    [16] 周显明, 汪小松, 李赛男, 李 俊, 李加波, 经福谦. 强冲击压缩下LiF,Al2O3和LiTaO3单晶的透光性. 物理学报, 2007, 56(8): 4965-4970. doi: 10.7498/aps.56.4965
    [17] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究. 物理学报, 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [18] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [19] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [20] 董正高, 沈明荣, 徐闰, 甘肇强, 葛水兵. 氧气氛低温退火Pt/Ba0.8Sr0.2TiO3Pt引起的低频介电弛豫效应. 物理学报, 2002, 51(12): 2896-2900. doi: 10.7498/aps.51.2896
计量
  • 文章访问数:  4359
  • PDF下载量:  1198
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-02
  • 修回日期:  2012-04-15
  • 刊出日期:  2012-10-05

钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究

  • 1. 广东工业大学物理与光电工程学院, 广州 510006
    基金项目: 国家自然科学基金(批准号: 10774030); 广东省科技计划项目(批准号: 2010B090400141)和广州市科技计划项目(批准号: 2010Y1-C221)资助的课题.

摘要: 采用氧化物固相反应法,制备出纯氧化铝陶瓷及其分别掺杂稀土元素钇和镧的陶瓷样品. 测量了样品的结构、介电特性和热导性能;研究了烧结温度对掺杂不同稀土元素的陶瓷样品的性能的影响. X射线衍射结果表明1500℃烧结后陶瓷样品形成了单一的固溶体. 而氧化铝的热导率达到8.60 W/(m·K),样品的介电性能稳定. 我们发现掺杂Y3+和La3+的氧化铝陶瓷存在介电弛豫现象,并对该现象进行了机理分析.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回