搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α-Al2O3介孔材料导热特性的模拟

袁思伟 冯妍卉 王鑫 张欣欣

引用本文:
Citation:

α-Al2O3介孔材料导热特性的模拟

袁思伟, 冯妍卉, 王鑫, 张欣欣

Molecular dynamics simulation of thermal conductivity of mesoporous α-Al2O3

Yuan Si-Wei, Feng Yan-Hui, Wang Xin, Zhang Xin-Xin
PDF
导出引用
  • 本文针对α-Al2O3有序介孔材料的导热特性开展分子动力学模拟分析. 提出了一种保证电中性的孔道结构构造方法;采用逆非平衡分子动力学方法(muller-plathe法),选取Matsui势为作用势,模拟计算了Al2O3介孔晶体材料在不同环境温度下沿孔道轴向方向的热导率;并借助全面实验分析法,设计了模拟条件,以考察孔径和孔隙率对热导率的影响. 模拟结果显示:介孔Al2O3热导率先随温度的升高呈上升趋势,并在200–400 K之间取得极值;而后在400–1400 K范围内,热导率随温度的升高几乎呈线性下降. 孔隙率一定时,随孔径增大,介孔Al2O3材料比表面积降低,界面散射的抑制作用减弱,使材料热导率略有上升;孔径一定时,随孔隙率上升,孔道壁面声子数减少,材料热导率下降明显;相对于孔径因素,材料孔隙率对声子导热影响更大.
    In this paper, molecular dynamics simulation was performed to predict the thermal conductivities of ordered mesoporous α-Al2O3. A kind of porous structure was proposed to guarantee the electrical neutrality. Based on the Matsui potential, the nonequilibrium molecular dynamics method adapted by Mller-Plathe was used to calculate the lattice thermal conductivity of mesoporous alumina along the axial direction of pore at various temperatures. Effects of pore size and porosity were also investigated. It turns out that with increasing temperature the thermal conductivity of mesoporous α-Al2O3 rises first until the temperature reaches 200–400 K, then decreases almost linearly. In addition, as the pore size gets larger, the specific surface area decreases, and the thermal conductivity increases because the boundary scattering has been weakened. On the other hand, the number of phonons in the pore wall decreases greatly with increasing porosity, thus dramatically reducing the thermal conductivity of the mesoporous material. Range analysis shows that the porosity is more influential than the pore size on the thermal conductivity of mesoporous materials.
    • 基金项目: 国家自然科学基金(批准号:50836001)、国家重点基础研究发展计划(973计划)(批准号:2012CB720404)和中央高校基本科研业务费专项资金(批准号:FRF-AS-12-002;FRF-TP-11-001B)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.50836001), the National Basic Research Program of China(Grant No.2012CB720404), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. FRF-AS-12-002, FRF-TP-11-001B).
    [1]

    Huang C L, Feng Y H, Zhang X X Wang G Li J 2011 Acta Phys. Sin. 60 114401(in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 王戈, 李静 2011 物理学报 60 114401]

    [2]

    Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J, Wang G 2012 Acta Phys. Sin. 61 154402(in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈 2012 物理学报 61 154402]

    [3]

    Xu J 2006 MS Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [许洁2006 硕士学位论文 (长春: 长春理工大学)]

    [4]

    Guo S L, Wang L D, Wang Y M, Wu H J, Shen Z Y 2013 Chin. Phys. B 22 044101.

    [5]

    Dè orre, H. Hè ubner 1984 Alumina: Processing, Properties, and Applications (Berlin: Springer-Verlag)pp09–20

    [6]

    Gan Z H, Ning G L, Lin Y Cong Y 2007 Mater. Lett. 61 3758

    [7]

    Liu Q, Wang A Q, Wang X D, Zhang T 2007 Micropor. Mesopor. Mat. 100 35

    [8]

    MayM, NavarreteJ, AsomozaM 2007 J. PorousMat. 14 159

    [9]

    Sun Z X, Zheng T T, Bo Q B, Du M Forsing W 2008 J. Colloid Interf. Sci. 319 247

    [10]

    Zhao R H, Guo F, Hu Y Q, Zhao H Q 2006 Micropor. Mesopor. Mat. 93 212

    [11]

    Ray J C, You K S, Ahn J W, Ahn W S 2007 Micropor. Mesopor. Mat. 100 183

    [12]

    Zhang X, Zhang F, Chan K Y 2004 Mater. Lett. 58 2872

    [13]

    Zilková N, Zukal A, Cejka 2006 J. Micropor. Mesopor. Mat. 95 176

    [14]

    Liu Q, Wang A Q, Wang X D, Zhang T 2006 Chem. Mater. 18 5153

    [15]

    Moretti E, Lenarda M, Storaro L, Talon A, Frattini R, Polizzi S, Rodrí guez-Castelló n E, Jimè nez-Ló pez A 2007 Applied Catalysis B 72 149

    [16]

    WangY F, Bryan C, Xu H F, Pohl P, Yang Y, Brinker C 2002 J. Colloid Interf. Sci. 254 23

    [17]

    Ching W Y, Ouyang L Z, Rulis P, Yao H Z 2008 Physic Review B 78 014106

    [18]

    Sun J Z, Stirner T, Matthews A 2007 Surface Science 601 1358

    [19]

    Boettger J C 1997 Physical Review B 55 750

    [20]

    Gutie’rrez G, Belonoshko A B, Ahuja R, Johansson B 2000 Physical Review E 61 2723

    [21]

    Masanori M 1994 Mineral Mag 58 A 571

    [22]

    Muller-Plathe F, Reith D 1999 Computational and Theoretical Polymer Science 9 203

    [23]

    Zhao Y P 2012 Physics Mechanics of Surface and Interface (Beijing: Science Press) pp34–37 (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第34–37页]

    [24]

    Clarke R 2003 Surface and Coatings Technology 163-164 67

    [25]

    Dugdale J S, MacDonald D K C 1955 Phys. Rev. 98 1751

    [26]

    Lawson A W 1957 Phys. Chem. Solids 3 155

    [27]

    Ziman J M, 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press) pp102

    [28]

    Braginsky L, Shklover V, Hofmann H, Bowen P 2004 Physic Review B 70 134201

    [29]

    Liang L H, Li B W, 2006 Physical Review B 73 153303

  • [1]

    Huang C L, Feng Y H, Zhang X X Wang G Li J 2011 Acta Phys. Sin. 60 114401(in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 王戈, 李静 2011 物理学报 60 114401]

    [2]

    Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J, Wang G 2012 Acta Phys. Sin. 61 154402(in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈 2012 物理学报 61 154402]

    [3]

    Xu J 2006 MS Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [许洁2006 硕士学位论文 (长春: 长春理工大学)]

    [4]

    Guo S L, Wang L D, Wang Y M, Wu H J, Shen Z Y 2013 Chin. Phys. B 22 044101.

    [5]

    Dè orre, H. Hè ubner 1984 Alumina: Processing, Properties, and Applications (Berlin: Springer-Verlag)pp09–20

    [6]

    Gan Z H, Ning G L, Lin Y Cong Y 2007 Mater. Lett. 61 3758

    [7]

    Liu Q, Wang A Q, Wang X D, Zhang T 2007 Micropor. Mesopor. Mat. 100 35

    [8]

    MayM, NavarreteJ, AsomozaM 2007 J. PorousMat. 14 159

    [9]

    Sun Z X, Zheng T T, Bo Q B, Du M Forsing W 2008 J. Colloid Interf. Sci. 319 247

    [10]

    Zhao R H, Guo F, Hu Y Q, Zhao H Q 2006 Micropor. Mesopor. Mat. 93 212

    [11]

    Ray J C, You K S, Ahn J W, Ahn W S 2007 Micropor. Mesopor. Mat. 100 183

    [12]

    Zhang X, Zhang F, Chan K Y 2004 Mater. Lett. 58 2872

    [13]

    Zilková N, Zukal A, Cejka 2006 J. Micropor. Mesopor. Mat. 95 176

    [14]

    Liu Q, Wang A Q, Wang X D, Zhang T 2006 Chem. Mater. 18 5153

    [15]

    Moretti E, Lenarda M, Storaro L, Talon A, Frattini R, Polizzi S, Rodrí guez-Castelló n E, Jimè nez-Ló pez A 2007 Applied Catalysis B 72 149

    [16]

    WangY F, Bryan C, Xu H F, Pohl P, Yang Y, Brinker C 2002 J. Colloid Interf. Sci. 254 23

    [17]

    Ching W Y, Ouyang L Z, Rulis P, Yao H Z 2008 Physic Review B 78 014106

    [18]

    Sun J Z, Stirner T, Matthews A 2007 Surface Science 601 1358

    [19]

    Boettger J C 1997 Physical Review B 55 750

    [20]

    Gutie’rrez G, Belonoshko A B, Ahuja R, Johansson B 2000 Physical Review E 61 2723

    [21]

    Masanori M 1994 Mineral Mag 58 A 571

    [22]

    Muller-Plathe F, Reith D 1999 Computational and Theoretical Polymer Science 9 203

    [23]

    Zhao Y P 2012 Physics Mechanics of Surface and Interface (Beijing: Science Press) pp34–37 (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第34–37页]

    [24]

    Clarke R 2003 Surface and Coatings Technology 163-164 67

    [25]

    Dugdale J S, MacDonald D K C 1955 Phys. Rev. 98 1751

    [26]

    Lawson A W 1957 Phys. Chem. Solids 3 155

    [27]

    Ziman J M, 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press) pp102

    [28]

    Braginsky L, Shklover V, Hofmann H, Bowen P 2004 Physic Review B 70 134201

    [29]

    Liang L H, Li B W, 2006 Physical Review B 73 153303

  • [1] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [2] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [3] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟. 物理学报, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [4] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [5] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [6] 艾立强, 张相雄, 陈民, 熊大曦. 类金刚石薄膜在硅基底上的沉积及其热导率. 物理学报, 2016, 65(9): 096501. doi: 10.7498/aps.65.096501
    [7] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [8] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [9] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [10] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [11] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [12] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [13] 曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸. 纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究. 物理学报, 2012, 61(4): 046501. doi: 10.7498/aps.61.046501
    [14] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究. 物理学报, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [15] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [16] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [17] 黄丛亮, 冯妍卉, 张欣欣, 王戈, 李静. 介孔材料MCM-41的导热研究. 物理学报, 2011, 60(11): 114401. doi: 10.7498/aps.60.114401
    [18] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [19] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [20] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
计量
  • 文章访问数:  3875
  • PDF下载量:  696
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-02
  • 修回日期:  2013-10-03
  • 刊出日期:  2014-01-05

α-Al2O3介孔材料导热特性的模拟

  • 1. 北京科技大学机械工程学院, 北京 100083;
  • 2. 北京科技大学冶金工业节能减排北京市重点实验室, 北京 100083;
  • 3. 北京市煤气热力工程设计院有限公司, 北京 100032
    基金项目: 国家自然科学基金(批准号:50836001)、国家重点基础研究发展计划(973计划)(批准号:2012CB720404)和中央高校基本科研业务费专项资金(批准号:FRF-AS-12-002;FRF-TP-11-001B)资助的课题.

摘要: 本文针对α-Al2O3有序介孔材料的导热特性开展分子动力学模拟分析. 提出了一种保证电中性的孔道结构构造方法;采用逆非平衡分子动力学方法(muller-plathe法),选取Matsui势为作用势,模拟计算了Al2O3介孔晶体材料在不同环境温度下沿孔道轴向方向的热导率;并借助全面实验分析法,设计了模拟条件,以考察孔径和孔隙率对热导率的影响. 模拟结果显示:介孔Al2O3热导率先随温度的升高呈上升趋势,并在200–400 K之间取得极值;而后在400–1400 K范围内,热导率随温度的升高几乎呈线性下降. 孔隙率一定时,随孔径增大,介孔Al2O3材料比表面积降低,界面散射的抑制作用减弱,使材料热导率略有上升;孔径一定时,随孔隙率上升,孔道壁面声子数减少,材料热导率下降明显;相对于孔径因素,材料孔隙率对声子导热影响更大.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回