搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子修正的石墨烯纳米带热导率分子动力学表征方法

郑伯昱 董慧龙 陈非凡

引用本文:
Citation:

基于量子修正的石墨烯纳米带热导率分子动力学表征方法

郑伯昱, 董慧龙, 陈非凡

Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction

Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan
PDF
导出引用
  • 本文提出了基于量子修正的非平衡态分子动力学模型,可用于石墨烯纳米带热导率的表征. 利用该模型对不同温度下,不同手性及宽度的石墨烯纳米带热导率进行了研究,结果发现:相较于经典分子动力学模型给出的热导率随温度升高而单调下降的结论,在低于Debye温度的情况下,量子修正模型的计算结果出现了反常现象. 本文研究还发现,石墨烯纳米带的热导率呈现出明显的边缘效应及尺度效应:锯齿型石墨烯纳米带的热导率明显高于扶手椅型石墨烯纳米带;全温段的热导率及热导率在低温段随温度变化的斜率均随宽度的增加而增大. 最后,文章用Boltzmann 声子散射理论对低温段的温度效应及尺度效应进行了阐释,其理论分析结果说明文章所建模型适合在全温段范围内对不同宽度和不同手性的热导率进行精确计算,可为石墨烯纳米带在传热散热领域的应用提供理论计算和分析依据.
    A nonequilibrium molecular dynamics model combined with quantum correction is presented for characterizing the thermal conductivity of graphene nanoribbons (GNR). Temperature effect on graphene nanoribbon thermal conductivity is revealed based on this model. It is shown that different from the decreasing dependence in classical nonequilibrium molecular dynamics simulations, an “anomaly” is revealed at low temperatures using quantum correction. Besides, the conductivity of GNR shows obvious edge and scale effects: The zigzag GNR have higher thermal conductivity than the zigzag GNR. The whole temperature range of thermal conductivity and the slope of thermal conductivity at low temperatures both show an increasing dependence of width. Boltzmann-Peierls phonon transport equation is used to explain the temperature and scale effects at low temperatures, indicating that the model constructed is suitable for a wide temperature range of accurate calculation for thermal conductivity of different chirality and width. Research provides a possible theoretical and computational basis for heat transfer and dissipation applications of GNR.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB934103)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB934103).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Jin F, Zhang ZH, Wang CZ, Deng XQ, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强2013 物理学报62 036103]

    [3]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红2012 物理学报 61 248502]

    [4]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin.Phys. B 21 027102

    [5]

    Deng S X, Liang S D 2012 Chin.Phys. B 21 047306

    [6]

    Shao Q, Liu G, Teweldebrhan D 2008 Appl. Phys. Lett. 92 202108

    [7]

    Cai W W, Moore A L, Zhu Y W, Li X S, Chen S S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645

    [8]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

    [9]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)[林琦, 陈余行, 吴建宝, 孔宗敏2011 物理学报60 097103]

    [10]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [11]

    Zhang L J, Xia T S 2010 Chin. Phys. B 19 117105

    [12]

    Wei Z Y, Bi K D, Chen Y F 2010 Journal of Southeast University (Natural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞2010 东南大学学报40 306]

    [13]

    William J E, Lin H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [14]

    HanT W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)[韩同伟, 贺鹏飞2010 物理学报59 3408]

    [15]

    Florian M L 1997 J. Chem. Phys. 106 6082

    [16]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Communications. 102 517

    [17]

    Lukes J R, Zhong H L 2007 J. Heat Transfer. 129 705

    [18]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [19]

    WangS C, Liang X G, Xu X H, Ohara T 2009 Appl. Phys. 105 014316

    [20]

    Hasegawa H 2009 Phys. Rev. E 80 011126

    [21]

    Evens D J, Holian B L 1985 Chem. Phys. 83 4069

    [22]

    Guo Z G, Zhang D E, Gong X G 2009 Appl. Phys. Lett. 95 163103

    [23]

    Paul P, David E, Raj S 2012 Journal of Heat Transfer. 134 122401

    [24]

    Srivastava G P The Physics of Phonons (IOP, Philadelphia 1990) p99

    [25]

    Vandescuren M, Hermet P, Meunier V, Henrard L, Lambin P 2008 Phys. Rev. B 78 195401

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Jin F, Zhang ZH, Wang CZ, Deng XQ, Fan Z Q 2013 Acta Phys. Sin. 62 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强2013 物理学报62 036103]

    [3]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红2012 物理学报 61 248502]

    [4]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin.Phys. B 21 027102

    [5]

    Deng S X, Liang S D 2012 Chin.Phys. B 21 047306

    [6]

    Shao Q, Liu G, Teweldebrhan D 2008 Appl. Phys. Lett. 92 202108

    [7]

    Cai W W, Moore A L, Zhu Y W, Li X S, Chen S S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645

    [8]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

    [9]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese)[林琦, 陈余行, 吴建宝, 孔宗敏2011 物理学报60 097103]

    [10]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [11]

    Zhang L J, Xia T S 2010 Chin. Phys. B 19 117105

    [12]

    Wei Z Y, Bi K D, Chen Y F 2010 Journal of Southeast University (Natural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞2010 东南大学学报40 306]

    [13]

    William J E, Lin H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [14]

    HanT W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)[韩同伟, 贺鹏飞2010 物理学报59 3408]

    [15]

    Florian M L 1997 J. Chem. Phys. 106 6082

    [16]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Communications. 102 517

    [17]

    Lukes J R, Zhong H L 2007 J. Heat Transfer. 129 705

    [18]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [19]

    WangS C, Liang X G, Xu X H, Ohara T 2009 Appl. Phys. 105 014316

    [20]

    Hasegawa H 2009 Phys. Rev. E 80 011126

    [21]

    Evens D J, Holian B L 1985 Chem. Phys. 83 4069

    [22]

    Guo Z G, Zhang D E, Gong X G 2009 Appl. Phys. Lett. 95 163103

    [23]

    Paul P, David E, Raj S 2012 Journal of Heat Transfer. 134 122401

    [24]

    Srivastava G P The Physics of Phonons (IOP, Philadelphia 1990) p99

    [25]

    Vandescuren M, Hermet P, Meunier V, Henrard L, Lambin P 2008 Phys. Rev. B 78 195401

  • [1] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [2] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 物理学报, 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [3] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [4] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟. 物理学报, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [5] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [6] 沈珏, 刘成周, 朱宁宁, 童一诺, 严晨成, 薛珂磊. 非对易施瓦西黑洞的热力学及其量子修正. 物理学报, 2019, 68(20): 200401. doi: 10.7498/aps.68.20191054
    [7] 艾立强, 张相雄, 陈民, 熊大曦. 类金刚石薄膜在硅基底上的沉积及其热导率. 物理学报, 2016, 65(9): 096501. doi: 10.7498/aps.65.096501
    [8] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟. 物理学报, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [9] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [10] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [11] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [12] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [13] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [14] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [15] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [16] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [18] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [19] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [20] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
计量
  • 文章访问数:  4514
  • PDF下载量:  1508
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-17
  • 修回日期:  2014-01-07
  • 刊出日期:  2014-04-05

基于量子修正的石墨烯纳米带热导率分子动力学表征方法

  • 1. 清华大学精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084
    基金项目: 国家重点基础研究发展计划(批准号:2012CB934103)资助的课题.

摘要: 本文提出了基于量子修正的非平衡态分子动力学模型,可用于石墨烯纳米带热导率的表征. 利用该模型对不同温度下,不同手性及宽度的石墨烯纳米带热导率进行了研究,结果发现:相较于经典分子动力学模型给出的热导率随温度升高而单调下降的结论,在低于Debye温度的情况下,量子修正模型的计算结果出现了反常现象. 本文研究还发现,石墨烯纳米带的热导率呈现出明显的边缘效应及尺度效应:锯齿型石墨烯纳米带的热导率明显高于扶手椅型石墨烯纳米带;全温段的热导率及热导率在低温段随温度变化的斜率均随宽度的增加而增大. 最后,文章用Boltzmann 声子散射理论对低温段的温度效应及尺度效应进行了阐释,其理论分析结果说明文章所建模型适合在全温段范围内对不同宽度和不同手性的热导率进行精确计算,可为石墨烯纳米带在传热散热领域的应用提供理论计算和分析依据.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回