搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电极间距对μc-Si1-xGex:H薄膜结构特性的影响

曹宇 张建军 严干贵 倪牮 李天微 黄振华 赵颖

引用本文:
Citation:

电极间距对μc-Si1-xGex:H薄膜结构特性的影响

曹宇, 张建军, 严干贵, 倪牮, 李天微, 黄振华, 赵颖

Influences of electrode separation on structural properties of μc-Si1-xGex:H thin films

Cao Yu, Zhang Jian-Jun, Yan Gan-Gui, Ni Jian, Li Tian-Wei, Huang Zhen-Hua, Zhao Ying
PDF
导出引用
  • 采用射频等离子体增强化学气相沉积(RF-PECVD)技术,使用SiH4加GeH4的反应气源组合生长微晶硅锗(μc-Si1-xGex:H)薄膜. 研究了电极间距对μc-Si1-xGex:H薄膜结构特性的影响. 发现薄膜中的Ge含量随电极间距的降低逐渐增加. 当电极间距降至7 mm时,μc-Si1-xGex:H薄膜具有较大的晶粒尺寸并呈现较强的(220)择优取向,同时具有较低的微结构因子. 通过薄膜结构特性的变化分析了反应气源的分解状态,认为Ge含量的提高主要是SiH4的分解率降低所导致的. 在较窄的电极间距(7 mm)下,等离子体中GeH3基团的比例较大,增强了Ge前驱物的扩散能力,使μc-Si1-xGex:H薄膜的质量得到提高.
    Hydrogenated microcrystalline silicon germanium (μc-Si1-xGex:H) thin films have been prepared by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) using a mixture of SiH4 and GeH4 as the reactive gases. Effects of electrode separation on the structural properties of μc-Si1-xGex:H thin films have been investigated. Results show that reduction of the electrode separation can increase the Ge content in the films. Moreover, μc-Si1-xGex:H thin film deposited at a lower electrode separation of 7 mm possesses not only a stronger (220) orientation and a larger grain size, but also a lower microstructural factor. Then, the decomposition characteristics of the reactive gases are analyzed according to the variation of the structural properties of the μc-Si1-xGex:H thin films. It is found that the increase of the Ge content is due to the decrease of the SiH4 decomposition rate in the plasma. While the better film quality obtained at the lower electrode separation is attributed to the enhancement of the diffusibility of the Ge precursors caused by improving the proportion of GeH3 radicals
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CBA00705,2011CBA00706,2011CBA00707)、国家自然科学基金(批准号:61377031)、天津市应用基础及前沿技术研究计划(批准号:12JCQNJC01000)和东北电力大学博士科研启动基金(批准号:BSJXM-201304)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2011CBA00705, 2011CBA00706, 2011CBA00707), the National Natural Science Foundation of China (Grant No. 61377031), nd the Natural Science Foundation of Tianjin, China (Grant No. 12JCQNJC01000), and the Dctoral Scientific Research Foundation of Northeast Dianli University (Grant No BSJXM-201304).
    [1]

    Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 285 692

    [2]

    Kim S, Chung J W, Lee H, Park J, Heo Y, Lee H M 2013 Sol. Energy Mater. Sol. Cells 119 26

    [3]

    Yan B J, Yue G Z, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512

    [4]

    Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803

    [5]

    Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M, Matsuda A 1996 Appl. Phys. Lett. 69 4224

    [6]

    Cao Y, Zhang J J, Li C, Li T W, Huang Z H, Ni J, Hu Z Y, Geng X H, Zhao Y 2013 Sol. Energy Mater. Sol. Cells 114 161

    [7]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Yang X, Ni J, Geng X H, Zhao Y 2013 Journal of Semiconductors 34 034008

    [8]

    Dun Y L, Zhang J J, Zhang L P, Zhang X, Cao Y, Hao Q Y, Geng X H, Zhao Y 2011 Journal of Optoelectronics Laser 22 382 (in Chinese)[敦亚琳, 张建军, 张丽平, 张鑫, 曹宇, 郝秋艳, 耿新华, 赵颖2011 光电子激光22 382]

    [9]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J Geng X H, Zhao Y 2013 Acta Phy. Sin 62 036102 (in Chinese)[曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖2013 物理学报62 036102]

    [10]

    Gu S B, Hu Z X, Zhang J J, Sun J, Yang R X 2007 Journal of Optoelectronics Laser 18 539 (in Chinese)[谷士斌, 胡增鑫, 张建军, 孙建, 杨瑞霞2007 光电子激光 18 539]

    [11]

    Kim S, Park C, Lee J C, Cho J S, Kim Y 2013 Thin Solid Films 534 214

    [12]

    Matsui T, Chang C W, Takada T, Isomura M, Fujiwara H, Kondo M 2009 Sol. Energy Mater. Sol. Cells 93 1100

    [13]

    Isomura M, Nakahata K, Shima M Taira S, Wakisaka K, Tanaka M, Kiyama S 2002 Sol. Energy Mater. Sol. Cells 74 519

    [14]

    Miyazaki S, Takahashi H, Yamashita H, Narasaki M, Hirose M 2002 J. Non-Cryst. Solids 299 148

    [15]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Yang X, Ni J, Geng X H, Zhao Y 2013 Journal of Optoelectronics Laser 24 924 (in Chinese)[曹宇, 张建军, 李天微, 黄振华, 马峻, 杨旭, 倪牮, 耿新华, 赵颖2013 光电子激光24 924]

    [16]

    Zhong C J, Tanaka H, Sugawa S, Sugawa S, Ohmi T 2005 Thin Solid Films 493 54

    [17]

    Scherrer P 1918 Gött. Nachr. 2 98

    [18]

    Wagner H, Beyer W 1983 Solid State Commun. 48 585

    [19]

    Guo Q C, Geng X H, Sun J, Wei C C, Han X Y, Zhang X D, Zhao Y 2007 Acta Phy. Sin 56 2790 (in Chinese)[郭群超, 耿新华, 孙建, 魏长春, 韩晓艳, 张晓丹, 赵颖2007 物理学报56 2790]

    [20]

    Roschek T, Rech B, Mller J, Schmitz R, Wagner H 2004 Thin Solid Films 451 466

    [21]

    Rajesh K, Brodie D E 1994 Thin Solid Films 249 254

    [22]

    Doyle J R, Doughty D A, Gallagher A 1992 J. Appl. Phys. 71 4727

    [23]

    Chowdhury A, Mukhopadhyay S, Ray S 2010 Sol. Energy Mater. Sol. Cells 94 1522

    [24]

    Zhang J J, Cao Y, Li T W, Huang Z H, Ma J, Ni J, Zhao Y 2013 International Photonics and Optoelectronics Meetings Wuhan, China, May, 2013 ASa3A.32

  • [1]

    Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 285 692

    [2]

    Kim S, Chung J W, Lee H, Park J, Heo Y, Lee H M 2013 Sol. Energy Mater. Sol. Cells 119 26

    [3]

    Yan B J, Yue G Z, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512

    [4]

    Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803

    [5]

    Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M, Matsuda A 1996 Appl. Phys. Lett. 69 4224

    [6]

    Cao Y, Zhang J J, Li C, Li T W, Huang Z H, Ni J, Hu Z Y, Geng X H, Zhao Y 2013 Sol. Energy Mater. Sol. Cells 114 161

    [7]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Yang X, Ni J, Geng X H, Zhao Y 2013 Journal of Semiconductors 34 034008

    [8]

    Dun Y L, Zhang J J, Zhang L P, Zhang X, Cao Y, Hao Q Y, Geng X H, Zhao Y 2011 Journal of Optoelectronics Laser 22 382 (in Chinese)[敦亚琳, 张建军, 张丽平, 张鑫, 曹宇, 郝秋艳, 耿新华, 赵颖2011 光电子激光22 382]

    [9]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J Geng X H, Zhao Y 2013 Acta Phy. Sin 62 036102 (in Chinese)[曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖2013 物理学报62 036102]

    [10]

    Gu S B, Hu Z X, Zhang J J, Sun J, Yang R X 2007 Journal of Optoelectronics Laser 18 539 (in Chinese)[谷士斌, 胡增鑫, 张建军, 孙建, 杨瑞霞2007 光电子激光 18 539]

    [11]

    Kim S, Park C, Lee J C, Cho J S, Kim Y 2013 Thin Solid Films 534 214

    [12]

    Matsui T, Chang C W, Takada T, Isomura M, Fujiwara H, Kondo M 2009 Sol. Energy Mater. Sol. Cells 93 1100

    [13]

    Isomura M, Nakahata K, Shima M Taira S, Wakisaka K, Tanaka M, Kiyama S 2002 Sol. Energy Mater. Sol. Cells 74 519

    [14]

    Miyazaki S, Takahashi H, Yamashita H, Narasaki M, Hirose M 2002 J. Non-Cryst. Solids 299 148

    [15]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Yang X, Ni J, Geng X H, Zhao Y 2013 Journal of Optoelectronics Laser 24 924 (in Chinese)[曹宇, 张建军, 李天微, 黄振华, 马峻, 杨旭, 倪牮, 耿新华, 赵颖2013 光电子激光24 924]

    [16]

    Zhong C J, Tanaka H, Sugawa S, Sugawa S, Ohmi T 2005 Thin Solid Films 493 54

    [17]

    Scherrer P 1918 Gött. Nachr. 2 98

    [18]

    Wagner H, Beyer W 1983 Solid State Commun. 48 585

    [19]

    Guo Q C, Geng X H, Sun J, Wei C C, Han X Y, Zhang X D, Zhao Y 2007 Acta Phy. Sin 56 2790 (in Chinese)[郭群超, 耿新华, 孙建, 魏长春, 韩晓艳, 张晓丹, 赵颖2007 物理学报56 2790]

    [20]

    Roschek T, Rech B, Mller J, Schmitz R, Wagner H 2004 Thin Solid Films 451 466

    [21]

    Rajesh K, Brodie D E 1994 Thin Solid Films 249 254

    [22]

    Doyle J R, Doughty D A, Gallagher A 1992 J. Appl. Phys. 71 4727

    [23]

    Chowdhury A, Mukhopadhyay S, Ray S 2010 Sol. Energy Mater. Sol. Cells 94 1522

    [24]

    Zhang J J, Cao Y, Li T W, Huang Z H, Ma J, Ni J, Zhao Y 2013 International Photonics and Optoelectronics Meetings Wuhan, China, May, 2013 ASa3A.32

  • [1] 董婉, 徐海文, 戴忠玲, 宋远红, 王友年. 电非对称双频容性耦合CF4/Ar放电电极间距对放电模式和刻蚀剖面的影响. 物理学报, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [2] 李同锴, 徐征, 赵谡玲, 徐叙瑢, 薛俊明. 过渡区p型氢化硅氧薄膜结构和光电特性的研究. 物理学报, 2017, 66(19): 196801. doi: 10.7498/aps.66.196801
    [3] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [4] 何素明, 戴珊珊, 罗向东, 张波, 王金斌. 等离子体增强化学气相沉积工艺制备SiON膜及对硅的钝化. 物理学报, 2014, 63(12): 128102. doi: 10.7498/aps.63.128102
    [5] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [6] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究. 物理学报, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [7] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [8] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [9] 张欣盟, 田修波, 巩春志, 杨士勤. 约束阴极微弧氧化放电特性研究. 物理学报, 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [10] 单健, 肖德涛, 刘卫, 林俊, 王广华, 位楠楠, 周青芝. 大气颗粒物滞留时间的确定方法及初步实验验证. 物理学报, 2010, 59(8): 5358-5363. doi: 10.7498/aps.59.5358
    [11] 葛 洪, 张晓丹, 岳 强, 赵 静, 赵 颖. 甚高频等离子体增强化学气相沉积大面积平行板电极间真空电势差分布研究. 物理学报, 2008, 57(8): 5105-5110. doi: 10.7498/aps.57.5105
    [12] 郭群超, 耿新华, 孙 建, 魏长春, 韩晓艳, 张晓丹, 赵 颖. 气体滞留时间对高速沉积的微晶硅薄膜性能的影响分析. 物理学报, 2007, 56(5): 2790-2795. doi: 10.7498/aps.56.2790
    [13] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [14] 于 威, 王保柱, 杨彦斌, 路万兵, 傅广生. 螺旋波等离子体化学气相沉积纳米硅薄膜的光学发射谱研究. 物理学报, 2005, 54(5): 2394-2398. doi: 10.7498/aps.54.2394
    [15] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 王 岩, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积制备微晶硅太阳电池的研究. 物理学报, 2005, 54(4): 1899-1903. doi: 10.7498/aps.54.1899
    [16] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [17] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [18] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [19] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究. 物理学报, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [20] 刘湘娜, 吴晓薇, 鲍希茂, 何宇亮. 用等离子体增强化学汽相沉积方法制备纳米晶粒硅薄膜光致发光. 物理学报, 1994, 43(6): 985-990. doi: 10.7498/aps.43.985
计量
  • 文章访问数:  3261
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-13
  • 修回日期:  2013-12-21
  • 刊出日期:  2014-04-05

电极间距对μc-Si1-xGex:H薄膜结构特性的影响

  • 1. 东北电力大学电气工程学院, 吉林 132012;
  • 2. 南开大学光电子薄膜器件与技术研究所, 光电信息技术科学教育部重点实验室, 光电子薄膜器件与技术天津市重点实验室, 天津 300071
    基金项目: 国家重点基础研究发展计划(批准号:2011CBA00705,2011CBA00706,2011CBA00707)、国家自然科学基金(批准号:61377031)、天津市应用基础及前沿技术研究计划(批准号:12JCQNJC01000)和东北电力大学博士科研启动基金(批准号:BSJXM-201304)资助的课题.

摘要: 采用射频等离子体增强化学气相沉积(RF-PECVD)技术,使用SiH4加GeH4的反应气源组合生长微晶硅锗(μc-Si1-xGex:H)薄膜. 研究了电极间距对μc-Si1-xGex:H薄膜结构特性的影响. 发现薄膜中的Ge含量随电极间距的降低逐渐增加. 当电极间距降至7 mm时,μc-Si1-xGex:H薄膜具有较大的晶粒尺寸并呈现较强的(220)择优取向,同时具有较低的微结构因子. 通过薄膜结构特性的变化分析了反应气源的分解状态,认为Ge含量的提高主要是SiH4的分解率降低所导致的. 在较窄的电极间距(7 mm)下,等离子体中GeH3基团的比例较大,增强了Ge前驱物的扩散能力,使μc-Si1-xGex:H薄膜的质量得到提高.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回