搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体增强化学气相沉积工艺制备SiON膜及对硅的钝化

何素明 戴珊珊 罗向东 张波 王金斌

引用本文:
Citation:

等离子体增强化学气相沉积工艺制备SiON膜及对硅的钝化

何素明, 戴珊珊, 罗向东, 张波, 王金斌

Preparation of SiON film by plasma enhanced chemical vapor deposition and passivation on Si

He Su-Ming, Dai Shan-Shan, Luo Xiang-Dong, Zhang Bo, Wang Jin-Bin
PDF
导出引用
  • 研究了等离子体增强化学气相沉积工艺条件对氮氧化硅膜的生长厚度及折射率的影响以及氮氧化硅/氮化硅叠层膜对p型硅片的钝化效果. 实验结果表明,NH3的流量和N2O/SiH4 流量比对氮氧化硅膜的影响较大,薄膜折射率能从1.48变化到2.1,厚度从30–60 nm不等. 腔内压力和射频功率主要影响膜厚,压力越大,功率越大,沉积速率加快,生成的膜越厚. 温度对膜厚和折射率的影响可以忽略. 钝化效果显示,在有无NH3下,N2O/SiH4流量比分别为20和30时,退火后氮氧化硅/氮化硅叠层膜对p 型硅的钝化效果最好,其潜在电压和少子寿命分别为652 mV,56.7 μs 和649 mV,50.8 μs,均优于参照组氮化硅膜样品的钝化效果.
    The influences of technological condition on thickness and refractive index of the SiON films preprared by plasma enhanced chemical vapor deposition and the influence of SiON/SiNx stacked film on passivation performance on P-type silicon wafer are investigatied. The results show that the refractive index of SiON film varies from 1.48 to 2.1 and thickness varies from 30-60 nm by changing the gas flow of NH3 and the gas flow ratio of N2O/SiH4. The pressure and RF power mainly affect the thickness of the film. The greater the pressure, the higher the RF power, the faster the deposition rate is and the thicker the film is. The influences of temperature on the film thickness and refractive index can be ignored. The passivation shows that the passivation performance of P-type silicon film after annealing SiON/SiNx stacked films with a gas flow ratio of N2O/SiH4 20 and 30 in the absence and the presence of NH3, is best, which the implied voltages and the lifetimes of minority carriers are 652 mV, 56.7 μs and 649 mV, 50.8 μs, respectively. The passivation effect of SiON/SiNx stacked film is superior to that of the reference SiNx film.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB925604,2011CB922004)和中国博士后科学基金(批准号:20110490075)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB925604, 2011CB922004) and the China Postdoctoral Science Foundation (Grant No. 20110490075).
    [1]

    Glunz S W 2007 Adv. OptoElectron. 2007 97370

    [2]

    Riegel S, Gloger S, Raabe B, Hahn G 2009 24th EUPVSEC Hamburg, Germany, September 21-25, 2009 p1596

    [3]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [4]

    Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106

    [5]

    Zhao J H, Wang A H, Green M A 1999 Prog. Photovolt. 7 471

    [6]

    Aberle A G 2000 Prog. Photovolt. 8 473

    [7]

    Gruenbaum P E, Gan J Y, King R, Swanson R M 1990 PVSC,Conference Record of the 21st IEEE Kissimmee, Florida, May 21-25, 1990 p317

    [8]

    Schultz O, Glunz S W, Goldschmidt J C, Lautenschlager H, Leimenstoll A, Schneiderlöchner E, Willeke G P 2004 19th EUPVSEC Paris, France, June 7-11, 2004 p604

    [9]

    Meemongkolkiat V, Kim D S, Rohatgi A 2007 22nd EUPVSEC Milan, Italy, September 3-7, 2007 p1034

    [10]

    Chang W L, Sun W C, Lin C H, Lan C W 2008 23rd EUPVSEC Valencia, Spain, September 1-5, 2008 p1349

    [11]

    Li T T, Cuevas A 2009 Phys. Status Solidi (RRL) 3 160

    [12]

    Hofmann M, Janz S, Schmidt C, Kambor S, Suwito D, Kohn N, Rentsch J, Preu R, Glunz S W 2009 Sol. Energy Mater. Sol. Cells. 93 1074

    [13]

    Moschner J D, Henze J, Schmidt J, Hezel R 2004 Prog. Photovolt. 12 21

    [14]

    Lenkeit B, Lauinger T, Aberle A G, Hezel R 1998 2nd WCPVSEC Vienna, Austria, July 6-10, 1998 p1434

    [15]

    Dupuis J, Fourmond E, Nichiporuk O, Gibaja F, Lemiti M 2008 23rd EUPVSEC Valencia, Spain, September 1-5, 2008 p1633

    [16]

    Dingemans G, Kessels E 2012 J. Vac. Sci. Technol. A 30 040802

    [17]

    He Y, Dou Y N, Ma X G, Chen S B, Chu J H 2012 Acta Phys. Sin. 61 248102 (in Chinese) [何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩 2012 物理学报 61 248102]

    [18]

    Poodt P, Lankhorst A, Roozeboom F, Spee K, Maas D, Vermeer A 2010 Adv. Mater. 22 3564

    [19]

    Maeda M, Itsumi M 1998 J. Appl. Phys. 84 5243

    [20]

    Dupuis J, Fourmond E, Lelièvre J F, Ballutaud D, Lemiti M 2008 Thin Solid Films 516 6954

    [21]

    Gong C F, Xi Z Q, Wang X Q, Yang D R, Que D L 2006 Acta Energ. Sol. Sin. 27 300 (in Chinese) [龚灿锋, 席珍强, 王晓泉, 杨德仁, 阙端麟 2006 太阳能学报 27 300]

  • [1]

    Glunz S W 2007 Adv. OptoElectron. 2007 97370

    [2]

    Riegel S, Gloger S, Raabe B, Hahn G 2009 24th EUPVSEC Hamburg, Germany, September 21-25, 2009 p1596

    [3]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [4]

    Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106

    [5]

    Zhao J H, Wang A H, Green M A 1999 Prog. Photovolt. 7 471

    [6]

    Aberle A G 2000 Prog. Photovolt. 8 473

    [7]

    Gruenbaum P E, Gan J Y, King R, Swanson R M 1990 PVSC,Conference Record of the 21st IEEE Kissimmee, Florida, May 21-25, 1990 p317

    [8]

    Schultz O, Glunz S W, Goldschmidt J C, Lautenschlager H, Leimenstoll A, Schneiderlöchner E, Willeke G P 2004 19th EUPVSEC Paris, France, June 7-11, 2004 p604

    [9]

    Meemongkolkiat V, Kim D S, Rohatgi A 2007 22nd EUPVSEC Milan, Italy, September 3-7, 2007 p1034

    [10]

    Chang W L, Sun W C, Lin C H, Lan C W 2008 23rd EUPVSEC Valencia, Spain, September 1-5, 2008 p1349

    [11]

    Li T T, Cuevas A 2009 Phys. Status Solidi (RRL) 3 160

    [12]

    Hofmann M, Janz S, Schmidt C, Kambor S, Suwito D, Kohn N, Rentsch J, Preu R, Glunz S W 2009 Sol. Energy Mater. Sol. Cells. 93 1074

    [13]

    Moschner J D, Henze J, Schmidt J, Hezel R 2004 Prog. Photovolt. 12 21

    [14]

    Lenkeit B, Lauinger T, Aberle A G, Hezel R 1998 2nd WCPVSEC Vienna, Austria, July 6-10, 1998 p1434

    [15]

    Dupuis J, Fourmond E, Nichiporuk O, Gibaja F, Lemiti M 2008 23rd EUPVSEC Valencia, Spain, September 1-5, 2008 p1633

    [16]

    Dingemans G, Kessels E 2012 J. Vac. Sci. Technol. A 30 040802

    [17]

    He Y, Dou Y N, Ma X G, Chen S B, Chu J H 2012 Acta Phys. Sin. 61 248102 (in Chinese) [何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩 2012 物理学报 61 248102]

    [18]

    Poodt P, Lankhorst A, Roozeboom F, Spee K, Maas D, Vermeer A 2010 Adv. Mater. 22 3564

    [19]

    Maeda M, Itsumi M 1998 J. Appl. Phys. 84 5243

    [20]

    Dupuis J, Fourmond E, Lelièvre J F, Ballutaud D, Lemiti M 2008 Thin Solid Films 516 6954

    [21]

    Gong C F, Xi Z Q, Wang X Q, Yang D R, Que D L 2006 Acta Energ. Sol. Sin. 27 300 (in Chinese) [龚灿锋, 席珍强, 王晓泉, 杨德仁, 阙端麟 2006 太阳能学报 27 300]

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [3] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [4] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [5] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用. 物理学报, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [6] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [7] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究. 物理学报, 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [8] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究. 物理学报, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [9] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性. 物理学报, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [10] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [11] 宋捷, 郭艳青, 王祥, 丁宏林, 黄锐. 激发频率对高氢稀释下纳米晶硅薄膜生长特性的影响. 物理学报, 2010, 59(10): 7378-7382. doi: 10.7498/aps.59.7378
    [12] 袁贺, 孙长征, 徐建明, 武庆, 熊兵, 罗毅. 基于等离子体增强化学气相沉积技术的光电子器件多层抗反膜的设计和制作. 物理学报, 2010, 59(10): 7239-7244. doi: 10.7498/aps.59.7239
    [13] 张晓丹, 孙福和, 许盛之, 王光红, 魏长春, 孙建, 侯国付, 耿新华, 熊绍珍, 赵颖. 单室沉积p-i-n型微晶硅薄膜太阳电池性能优化的研究. 物理学报, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [14] 陈兆权, 刘明海, 刘玉萍, 陈伟, 罗志清, 胡希伟. PECVD制备AZO(ZnO:Al)透明导电薄膜. 物理学报, 2009, 58(6): 4260-4266. doi: 10.7498/aps.58.4260
    [15] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 王 岩, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积制备微晶硅太阳电池的研究. 物理学报, 2005, 54(4): 1899-1903. doi: 10.7498/aps.54.1899
    [16] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [17] 纪爱玲, 马利波, 刘 澂, 王永谦. 纳米Si-SiOx和Si-SiNx复合薄膜的低温制备及其发光特性. 物理学报, 2004, 53(11): 3818-3822. doi: 10.7498/aps.53.3818
    [18] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [19] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究. 物理学报, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [20] 刘湘娜, 吴晓薇, 鲍希茂, 何宇亮. 用等离子体增强化学汽相沉积方法制备纳米晶粒硅薄膜光致发光. 物理学报, 1994, 43(6): 985-990. doi: 10.7498/aps.43.985
计量
  • 文章访问数:  8011
  • PDF下载量:  1371
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-29
  • 修回日期:  2014-03-05
  • 刊出日期:  2014-06-05

/

返回文章
返回