搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡区p型氢化硅氧薄膜结构和光电特性的研究

李同锴 徐征 赵谡玲 徐叙瑢 薛俊明

引用本文:
Citation:

过渡区p型氢化硅氧薄膜结构和光电特性的研究

李同锴, 徐征, 赵谡玲, 徐叙瑢, 薛俊明

Structural and optoelectronic properties of p-type SiO:H films deposited in transition zone

Li Tong-Kai, Xu Zheng, Zhao Su-Ling, Xu Xu-Rong, Xue Jun-Ming
PDF
导出引用
  • 采用射频等离子体增强化学气相沉积技术,利用二氧化碳(CO2)、氢气(H2)、硅烷(SiH4)和乙硼烷(B2H6)作为气源,制备出一系列p型氢化硅氧薄膜.利用拉曼光谱、傅里叶变换红外光谱和暗电导测试,研究了不同二氧化碳流量对薄膜材料结构和光电特性的影响,获得了从纳米晶相向非晶相转变的过渡区p层.研究表明:随着二氧化碳流量从0增加到1.2 cm3 min-1,拉曼光谱的峰值位置从520 cm-1逐渐移至480 cm-1.材料红外光谱表明,随着二氧化碳流量的增加,薄膜中的氧含量逐渐增加,氢键配置逐渐由硅单氢键转换为硅双氢键.P层SiO:H薄膜电导率从3 S/cm降为8.310-6 S/cm.所有p型SiO:H薄膜的光学带隙(Eopt)都在1.822.13 eV之间变化.在不加背反射电极的条件下,利用从纳米晶相向非晶相转变的过渡区p层作为电池的窗口层,且在P层和I层之间插入一定厚度的缓冲层,制备出效率为8.27%的非晶硅薄膜电池.
    P-type hydrogenated silicon oxide (p-SiOx:H) films are prepared by radio frequency plasma enhanced chemical deposition with various CO2 flow rates. We use gas mixtures of carbon dioxide (CO2), hydrogen (H2), silane (SiH4) and diborane (B2H6) as reaction source gases. For all experiments the substrate temperature, pressure and power density are fixed at 200 oC, 200 Pa and 200 mW/cm2, respectively. The films are deposited on Corning Eagle 2000 glass substrates for optoelectronic measurements and on crystalline Si wafers for Fourier transform infrared (FTIR) measurement. The structural, optical and electronic properties of the films are systematically studied as a function of CO2 flow rate. The CO2 flow rate is varied from 0 to 1.2 cm3 min-1, with all other parameters kept constant. It is shown that with the CO2 flow rate increasing from 0 to 1.2 cm3 min-1, the Raman peak shifts from 520 cm-1 to 480 cm-1 and corresponding crystalline volume fraction decreases from 70% to 0. In addition, the FTIR spectrum shows that the oxygen content increases from 0 to 17% and the hydrogen bond configuration gradually shifts from mono-hydrogen (Si-H) to di-hydrogen (Si-H2) and (Si-H2)n complexes in the film. What is more, with the incorporation of oxygen, the optical band gap of each of all p-type SiO:H films increases from 1.8 eV to 2.13 eV, while the dark conductivity decreases from 3 S/cm (nc-Si:H phase) to 8.310-6 S/cm (a-SiOx:H phase). Furthermore, the oxygen incorporation tends to disrupt the growth of silicon nanocrystals due to the created dangling bonds that arises from an increased structural disorder. This leads to microstructural evolution of SiO:H film from a single nanocrystalline phase into first a mixed amorphous-nanocrystalline and subsequently into an amorphous phase. At a certain threshold of CO2 flow rate, a transition from nanocrystalline to amorphous growth takes place. The transition from nanocrystalline to amorphous silicon is confirmed by Raman and FTIR spectra. In the transition region or crystalline volume fraction of about 45%, Raman spectrum also reveals that the a mixture of nanocrystalline silicon and amorphous silicon oxide (a-SiOx:H) phase exists in the film. This means that nanocrystalline silicon oxide (nc-SiO:H) is a two-phase structural material consisting of a dispersion of silicon nanocrystals (nc-Si) embedded in the amorphous SiOx network. As is well known, the oxygen-rich amorphous phase can help enhance the optical band gap, while the nc-Si phase contributes to high conductivity. Finally, it is the SiO:H film deposited at phase transition that can realize a relatively high dark conductivity (about S/cm) with a wide optical band gap of 2.01 eV in the film. By using the transition p-layer as the window layer in conjunction with a suitable buffer thickness, we obtain a thin film solar cell with an open-circuit voltage of 890 mV, a short-circuit current density of 12.77 mAcm-2, fill factor of 0.73, and efficiency of 8.27% without using any back reflector.
      通信作者: 徐征, zhengxu@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575019)资助的课题.
      Corresponding author: Xu Zheng, zhengxu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575019).
    [1]

    Lambertz A, Finger F, Hollnder B, Rath J K, Schropp R E 2012 J. Non-Cryst. Solids 358 1962

    [2]

    Zacharias M, Freistedt H, Stolze F 1993 J. Non-Cryst. Solids 164 1089

    [3]

    Naka yama Y M, Uecha T, Ikeda M 1996 J. Non-Cryst. Solids 198 915

    [4]

    Kobsak S, Nopphadol S, Puchong S 2011 Curr. Appl. Phys. 11 S47

    [5]

    Matsumoto Y, Mele Hndez F, Asomoza R 2001 Sol. Energy Mater. Sol. Cells 66 163

    [6]

    Yoon K, Kim Y, Park J, Shin C H, Baek S, Jang J, Iftiquar S M, Yi J 2011 J. Non-Cryst. Solids 357 2826

    [7]

    Liu H X, Yang Y B, Liu J P, Jiang Z Y, Yu W, Fu G S 2016 J. Alloys Compod. 671 532

    [8]

    Liao X B, Du W H 2006 J. Non-Cryst. Solids 352 1841

    [9]

    Yue G, Lorentzen J D, Lin J, Wang Q, Han D 1999 Appl. Phys. Lett. 75 492

    [10]

    Arup S, Debajyoti D 2009 Sol. Energy Mater. Sol. Cells 93 588

    [11]

    Iftiquar S M 1998 J. Phys. D:Appl. Phys. 31 1630

    [12]

    Haga K, Watanabe H 1996 J. Non-Cryst. Solids 195 72

    [13]

    He L, Inokuma T, Kurata Y, Hasegawa S 1995 J. Non-Cryst. Solids 185 249

    [14]

    Lucovsky G, Yang J, Chao S S, Tyler J E, Czubatyj W 1983 Phys. Rev. B 283 225

    [15]

    Kichan Y, Youngkuk K, JinJoo P J 2011 J. Non-Cryst. Solids 357 2826

    [16]

    Daey Ouwens J, Schropp R E I 1996 Phys. Rev. B 177 59

    [17]

    Dalal V, Knox R, Moradi B 1993 Sol. Energy Mater. Sol. Cells 31 349

    [18]

    Chang T H, Chang J Y, Chu Y H 2013 Surf. Coat. Technol. 231 604

    [19]

    Yang L, Abeles B, Eberhardt W, Sondericker D 1989 IEEE Trans. Electron Dev. 36 2798

    [20]

    Mahan A H, Nelson B P, Salamon S, Crandall R S 1991 J. Non-Cryst. Solids 137 657

    [21]

    Wang S, Wang Q, Zhang X D 2012 Proceedings of the 12th China PV Conference Beijing, September 2-7, 2012 p163

    [22]

    Buehlmann P, Bailat J, Domin D, Billet A, Meillaud F, Feltrin A, Ballif C 2007 Appl. Phys. Lett. 143 505

    [23]

    Zhang S B, Liao X B, An L, Kong G L, Wang Y Q 2002 Acta Phys. Sin. 51 1811 (in Chinese)[张世斌, 廖显伯, 安龙, 孔光临, 王永谦 2002 物理学报 51 1811]

    [24]

    Qiao Z, Xie X J, Hao Q Y, Wen D, Xue J M, Liu C C 2015 Appl. Surf. Sci. 324 152

  • [1]

    Lambertz A, Finger F, Hollnder B, Rath J K, Schropp R E 2012 J. Non-Cryst. Solids 358 1962

    [2]

    Zacharias M, Freistedt H, Stolze F 1993 J. Non-Cryst. Solids 164 1089

    [3]

    Naka yama Y M, Uecha T, Ikeda M 1996 J. Non-Cryst. Solids 198 915

    [4]

    Kobsak S, Nopphadol S, Puchong S 2011 Curr. Appl. Phys. 11 S47

    [5]

    Matsumoto Y, Mele Hndez F, Asomoza R 2001 Sol. Energy Mater. Sol. Cells 66 163

    [6]

    Yoon K, Kim Y, Park J, Shin C H, Baek S, Jang J, Iftiquar S M, Yi J 2011 J. Non-Cryst. Solids 357 2826

    [7]

    Liu H X, Yang Y B, Liu J P, Jiang Z Y, Yu W, Fu G S 2016 J. Alloys Compod. 671 532

    [8]

    Liao X B, Du W H 2006 J. Non-Cryst. Solids 352 1841

    [9]

    Yue G, Lorentzen J D, Lin J, Wang Q, Han D 1999 Appl. Phys. Lett. 75 492

    [10]

    Arup S, Debajyoti D 2009 Sol. Energy Mater. Sol. Cells 93 588

    [11]

    Iftiquar S M 1998 J. Phys. D:Appl. Phys. 31 1630

    [12]

    Haga K, Watanabe H 1996 J. Non-Cryst. Solids 195 72

    [13]

    He L, Inokuma T, Kurata Y, Hasegawa S 1995 J. Non-Cryst. Solids 185 249

    [14]

    Lucovsky G, Yang J, Chao S S, Tyler J E, Czubatyj W 1983 Phys. Rev. B 283 225

    [15]

    Kichan Y, Youngkuk K, JinJoo P J 2011 J. Non-Cryst. Solids 357 2826

    [16]

    Daey Ouwens J, Schropp R E I 1996 Phys. Rev. B 177 59

    [17]

    Dalal V, Knox R, Moradi B 1993 Sol. Energy Mater. Sol. Cells 31 349

    [18]

    Chang T H, Chang J Y, Chu Y H 2013 Surf. Coat. Technol. 231 604

    [19]

    Yang L, Abeles B, Eberhardt W, Sondericker D 1989 IEEE Trans. Electron Dev. 36 2798

    [20]

    Mahan A H, Nelson B P, Salamon S, Crandall R S 1991 J. Non-Cryst. Solids 137 657

    [21]

    Wang S, Wang Q, Zhang X D 2012 Proceedings of the 12th China PV Conference Beijing, September 2-7, 2012 p163

    [22]

    Buehlmann P, Bailat J, Domin D, Billet A, Meillaud F, Feltrin A, Ballif C 2007 Appl. Phys. Lett. 143 505

    [23]

    Zhang S B, Liao X B, An L, Kong G L, Wang Y Q 2002 Acta Phys. Sin. 51 1811 (in Chinese)[张世斌, 廖显伯, 安龙, 孔光临, 王永谦 2002 物理学报 51 1811]

    [24]

    Qiao Z, Xie X J, Hao Q Y, Wen D, Xue J M, Liu C C 2015 Appl. Surf. Sci. 324 152

  • [1] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [2] 曹宇, 张建军, 严干贵, 倪牮, 李天微, 黄振华, 赵颖. 电极间距对μc-Si1-xGex:H薄膜结构特性的影响. 物理学报, 2014, 63(7): 076801. doi: 10.7498/aps.63.076801
    [3] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [4] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [5] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [6] 孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰. PbI2对远红外Te基硫系玻璃光学性能的影响. 物理学报, 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [7] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [8] 贾璐, 谢二庆, 潘孝军, 张振兴. 溅射制备非晶氮化镓薄膜的光学性能. 物理学报, 2009, 58(5): 3377-3382. doi: 10.7498/aps.58.3377
    [9] 兰伟, 唐国梅, 曹文磊, 刘雪芹, 王印月. Ni掺杂ZnO薄膜的结构与光学特性研究. 物理学报, 2009, 58(12): 8501-8505. doi: 10.7498/aps.58.8501
    [10] 蒋爱华, 肖剑荣, 王德安. 退火对含氮氟非晶碳膜结构及光学带隙的影响. 物理学报, 2008, 57(9): 6013-6017. doi: 10.7498/aps.57.6013
    [11] 潘孝军, 张振兴, 王 涛, 李 晖, 谢二庆. 溅射制备纳米晶GaN∶Er薄膜的室温发光特性. 物理学报, 2008, 57(6): 3786-3790. doi: 10.7498/aps.57.3786
    [12] 邓金祥, 汪旭洋, 姚 倩, 周 涛, 张晓康. 立方氮化硼薄膜的光学带隙. 物理学报, 2008, 57(10): 6631-6635. doi: 10.7498/aps.57.6631
    [13] 梁丽萍, 张 磊, 盛永刚, 徐 耀, 吴 东, 孙予罕, 蒋晓东, 魏晓峰. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究. 物理学报, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [14] 许 颖, 刁宏伟, 张世斌, 励旭东, 曾湘波, 王文静, 廖显伯. 微量掺碳nc-SiC:H薄膜用于p-i-n太阳电池的窗口层. 物理学报, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [15] 肖剑荣, 徐 慧, 李燕峰, 李明君. 氮分压对氮化铜薄膜结构及光学带隙的影响. 物理学报, 2007, 56(7): 4169-4174. doi: 10.7498/aps.56.4169
    [16] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响. 物理学报, 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [17] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [18] 辛煜, 宁兆元, 程珊华, 陆新华, 甘肇强, 黄松. ECR-CVD法制备的a-C:F:H薄膜在N2气氛中的热退火研究. 物理学报, 2002, 51(2): 439-443. doi: 10.7498/aps.51.439
    [19] 叶超, 宁兆元, 程珊华, 王响英. 氟化非晶碳薄膜的光学带隙分析. 物理学报, 2002, 51(11): 2640-2643. doi: 10.7498/aps.51.2640
    [20] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
计量
  • 文章访问数:  4058
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-02
  • 修回日期:  2017-07-08
  • 刊出日期:  2017-10-05

/

返回文章
返回